343 lines
13 KiB
343 lines
13 KiB
/* |
|
* textdetection.cpp |
|
* |
|
* A demo program of End-to-end Scene Text Detection and Recognition: |
|
* Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in: |
|
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 |
|
* |
|
* Created on: Jul 31, 2014 |
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es> |
|
*/ |
|
|
|
#include "opencv2/text.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::text; |
|
|
|
//Calculate edit distance netween two words |
|
size_t edit_distance(const string& A, const string& B); |
|
size_t min(size_t x, size_t y, size_t z); |
|
bool isRepetitive(const string& s); |
|
bool sort_by_lenght(const string &a, const string &b); |
|
//Draw ER's in an image via floodFill |
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation); |
|
|
|
//Perform text detection and recognition and evaluate results using edit distance |
|
int main(int argc, char* argv[]) |
|
{ |
|
cout << endl << argv[0] << endl << endl; |
|
cout << "A demo program of End-to-end Scene Text Detection and Recognition: " << endl; |
|
cout << "Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:" << endl; |
|
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl; |
|
|
|
Mat image; |
|
if(argc>1) |
|
image = imread(argv[1]); |
|
else |
|
{ |
|
cout << " Usage: " << argv[0] << " <input_image> [<gt_word1> ... <gt_wordN>]" << endl; |
|
return(0); |
|
} |
|
|
|
cout << "IMG_W=" << image.cols << endl; |
|
cout << "IMG_H=" << image.rows << endl; |
|
|
|
/*Text Detection*/ |
|
|
|
// Extract channels to be processed individually |
|
vector<Mat> channels; |
|
|
|
Mat grey; |
|
cvtColor(image,grey,COLOR_RGB2GRAY); |
|
|
|
// Notice here we are only using grey channel, see textdetection.cpp for example with more channels |
|
channels.push_back(grey); |
|
channels.push_back(255-grey); |
|
|
|
double t_d = (double)getTickCount(); |
|
// Create ERFilter objects with the 1st and 2nd stage default classifiers |
|
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f); |
|
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5); |
|
|
|
vector<vector<ERStat> > regions(channels.size()); |
|
// Apply the default cascade classifier to each independent channel (could be done in parallel) |
|
for (int c=0; c<(int)channels.size(); c++) |
|
{ |
|
er_filter1->run(channels[c], regions[c]); |
|
er_filter2->run(channels[c], regions[c]); |
|
} |
|
cout << "TIME_REGION_DETECTION = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl; |
|
|
|
Mat out_img_decomposition= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); |
|
vector<Vec2i> tmp_group; |
|
for (int i=0; i<(int)regions.size(); i++) |
|
{ |
|
for (int j=0; j<(int)regions[i].size();j++) |
|
{ |
|
tmp_group.push_back(Vec2i(i,j)); |
|
} |
|
Mat tmp= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); |
|
er_draw(channels, regions, tmp_group, tmp); |
|
if (i > 0) |
|
tmp = tmp / 2; |
|
out_img_decomposition = out_img_decomposition | tmp; |
|
tmp_group.clear(); |
|
} |
|
|
|
double t_g = (double)getTickCount(); |
|
// Detect character groups |
|
vector< vector<Vec2i> > nm_region_groups; |
|
vector<Rect> nm_boxes; |
|
erGrouping(image, channels, regions, nm_region_groups, nm_boxes,ERGROUPING_ORIENTATION_HORIZ); |
|
cout << "TIME_GROUPING = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl; |
|
|
|
|
|
|
|
/*Text Recognition (OCR)*/ |
|
|
|
double t_r = (double)getTickCount(); |
|
OCRTesseract* ocr = new OCRTesseract(); |
|
cout << "TIME_OCR_INITIALIZATION = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl; |
|
string output; |
|
|
|
Mat out_img; |
|
Mat out_img_detection; |
|
Mat out_img_segmentation = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); |
|
image.copyTo(out_img); |
|
image.copyTo(out_img_detection); |
|
float scale_img = 600.f/image.rows; |
|
float scale_font = (float)(2-scale_img)/1.4f; |
|
vector<string> words_detection; |
|
|
|
t_r = (double)getTickCount(); |
|
|
|
for (int i=0; i<(int)nm_boxes.size(); i++) |
|
{ |
|
|
|
rectangle(out_img_detection, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(0,255,255), 3); |
|
|
|
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1); |
|
er_draw(channels, regions, nm_region_groups[i], group_img); |
|
Mat group_segmentation; |
|
group_img.copyTo(group_segmentation); |
|
//image(nm_boxes[i]).copyTo(group_img); |
|
group_img(nm_boxes[i]).copyTo(group_img); |
|
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0)); |
|
|
|
vector<Rect> boxes; |
|
vector<string> words; |
|
vector<float> confidences; |
|
ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD); |
|
|
|
output.erase(remove(output.begin(), output.end(), '\n'), output.end()); |
|
//cout << "OCR output = \"" << output << "\" lenght = " << output.size() << endl; |
|
if (output.size() < 3) |
|
continue; |
|
|
|
for (int j=0; j<(int)boxes.size(); j++) |
|
{ |
|
boxes[j].x += nm_boxes[i].x-15; |
|
boxes[j].y += nm_boxes[i].y-15; |
|
|
|
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl; |
|
if ((words[j].size() < 2) || (confidences[j] < 51) || |
|
((words[j].size()==2) && (words[j][0] == words[j][1])) || |
|
((words[j].size()< 4) && (confidences[j] < 60)) || |
|
isRepetitive(words[j])) |
|
continue; |
|
words_detection.push_back(words[j]); |
|
rectangle(out_img, boxes[j].tl(), boxes[j].br(), Scalar(255,0,255),3); |
|
Size word_size = getTextSize(words[j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL); |
|
rectangle(out_img, boxes[j].tl()-Point(3,word_size.height+3), boxes[j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1); |
|
putText(out_img, words[j], boxes[j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font)); |
|
out_img_segmentation = out_img_segmentation | group_segmentation; |
|
} |
|
|
|
} |
|
|
|
cout << "TIME_OCR = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl; |
|
|
|
|
|
/* Recognition evaluation with (approximate) hungarian matching and edit distances */ |
|
|
|
if(argc>2) |
|
{ |
|
int num_gt_characters = 0; |
|
vector<string> words_gt; |
|
for (int i=2; i<argc; i++) |
|
{ |
|
string s = string(argv[i]); |
|
if (s.size() > 0) |
|
{ |
|
words_gt.push_back(string(argv[i])); |
|
//cout << " GT word " << words_gt[words_gt.size()-1] << endl; |
|
num_gt_characters += (int)(words_gt[words_gt.size()-1].size()); |
|
} |
|
} |
|
|
|
if (words_detection.empty()) |
|
{ |
|
//cout << endl << "number of characters in gt = " << num_gt_characters << endl; |
|
cout << "TOTAL_EDIT_DISTANCE = " << num_gt_characters << endl; |
|
cout << "EDIT_DISTANCE_RATIO = 1" << endl; |
|
} |
|
else |
|
{ |
|
|
|
sort(words_gt.begin(),words_gt.end(),sort_by_lenght); |
|
|
|
int max_dist=0; |
|
vector< vector<int> > assignment_mat; |
|
for (int i=0; i<(int)words_gt.size(); i++) |
|
{ |
|
vector<int> assignment_row(words_detection.size(),0); |
|
assignment_mat.push_back(assignment_row); |
|
for (int j=0; j<(int)words_detection.size(); j++) |
|
{ |
|
assignment_mat[i][j] = (int)(edit_distance(words_gt[i],words_detection[j])); |
|
max_dist = max(max_dist,assignment_mat[i][j]); |
|
} |
|
} |
|
|
|
vector<int> words_detection_matched; |
|
|
|
int total_edit_distance = 0; |
|
int tp=0, fp=0, fn=0; |
|
for (int search_dist=0; search_dist<=max_dist; search_dist++) |
|
{ |
|
for (int i=0; i<(int)assignment_mat.size(); i++) |
|
{ |
|
int min_dist_idx = (int)distance(assignment_mat[i].begin(), |
|
min_element(assignment_mat[i].begin(),assignment_mat[i].end())); |
|
if (assignment_mat[i][min_dist_idx] == search_dist) |
|
{ |
|
//cout << " GT word \"" << words_gt[i] << "\" best match \"" << words_detection[min_dist_idx] << "\" with dist " << assignment_mat[i][min_dist_idx] << endl; |
|
if(search_dist == 0) |
|
tp++; |
|
else { fp++; fn++; } |
|
|
|
total_edit_distance += assignment_mat[i][min_dist_idx]; |
|
words_detection_matched.push_back(min_dist_idx); |
|
words_gt.erase(words_gt.begin()+i); |
|
assignment_mat.erase(assignment_mat.begin()+i); |
|
for (int j=0; j<(int)assignment_mat.size(); j++) |
|
{ |
|
assignment_mat[j][min_dist_idx]=INT_MAX; |
|
} |
|
i--; |
|
} |
|
} |
|
} |
|
|
|
for (int j=0; j<(int)words_gt.size(); j++) |
|
{ |
|
//cout << " GT word \"" << words_gt[j] << "\" no match found" << endl; |
|
fn++; |
|
total_edit_distance += (int)words_gt[j].size(); |
|
} |
|
for (int j=0; j<(int)words_detection.size(); j++) |
|
{ |
|
if (find(words_detection_matched.begin(),words_detection_matched.end(),j) == words_detection_matched.end()) |
|
{ |
|
//cout << " Detection word \"" << words_detection[j] << "\" no match found" << endl; |
|
fp++; |
|
total_edit_distance += (int)words_detection[j].size(); |
|
} |
|
} |
|
|
|
|
|
//cout << endl << "number of characters in gt = " << num_gt_characters << endl; |
|
cout << "TOTAL_EDIT_DISTANCE = " << total_edit_distance << endl; |
|
cout << "EDIT_DISTANCE_RATIO = " << (float)total_edit_distance / num_gt_characters << endl; |
|
cout << "TP = " << tp << endl; |
|
cout << "FP = " << fp << endl; |
|
cout << "FN = " << fn << endl; |
|
} |
|
} |
|
|
|
|
|
|
|
//resize(out_img_detection,out_img_detection,Size(image.cols*scale_img,image.rows*scale_img)); |
|
//imshow("detection", out_img_detection); |
|
//imwrite("detection.jpg", out_img_detection); |
|
//resize(out_img,out_img,Size(image.cols*scale_img,image.rows*scale_img)); |
|
namedWindow("recognition",WINDOW_NORMAL); |
|
imshow("recognition", out_img); |
|
waitKey(0); |
|
//imwrite("recognition.jpg", out_img); |
|
//imwrite("segmentation.jpg", out_img_segmentation); |
|
//imwrite("decomposition.jpg", out_img_decomposition); |
|
|
|
return 0; |
|
} |
|
|
|
size_t min(size_t x, size_t y, size_t z) |
|
{ |
|
return x < y ? min(x,z) : min(y,z); |
|
} |
|
|
|
size_t edit_distance(const string& A, const string& B) |
|
{ |
|
size_t NA = A.size(); |
|
size_t NB = B.size(); |
|
|
|
vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1)); |
|
|
|
for (size_t a = 0; a <= NA; ++a) |
|
M[a][0] = a; |
|
|
|
for (size_t b = 0; b <= NB; ++b) |
|
M[0][b] = b; |
|
|
|
for (size_t a = 1; a <= NA; ++a) |
|
for (size_t b = 1; b <= NB; ++b) |
|
{ |
|
size_t x = M[a-1][b] + 1; |
|
size_t y = M[a][b-1] + 1; |
|
size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1); |
|
M[a][b] = min(x,y,z); |
|
} |
|
|
|
return M[A.size()][B.size()]; |
|
} |
|
|
|
bool isRepetitive(const string& s) |
|
{ |
|
int count = 0; |
|
for (int i=0; i<(int)s.size(); i++) |
|
{ |
|
if ((s[i] == 'i') || |
|
(s[i] == 'l') || |
|
(s[i] == 'I')) |
|
count++; |
|
} |
|
if (count > ((int)s.size()+1)/2) |
|
{ |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation) |
|
{ |
|
for (int r=0; r<(int)group.size(); r++) |
|
{ |
|
ERStat er = regions[group[r][0]][group[r][1]]; |
|
if (er.parent != NULL) // deprecate the root region |
|
{ |
|
int newMaskVal = 255; |
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; |
|
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols), |
|
Scalar(255),0,Scalar(er.level),Scalar(0),flags); |
|
} |
|
} |
|
} |
|
|
|
bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());}
|
|
|