Repository for OpenCV's extra modules
 
 
 
 
 
 

343 lines
13 KiB

/*
* textdetection.cpp
*
* A demo program of End-to-end Scene Text Detection and Recognition:
* Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
*
* Created on: Jul 31, 2014
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
*/
#include "opencv2/text.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::text;
//Calculate edit distance netween two words
size_t edit_distance(const string& A, const string& B);
size_t min(size_t x, size_t y, size_t z);
bool isRepetitive(const string& s);
bool sort_by_lenght(const string &a, const string &b);
//Draw ER's in an image via floodFill
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation);
//Perform text detection and recognition and evaluate results using edit distance
int main(int argc, char* argv[])
{
cout << endl << argv[0] << endl << endl;
cout << "A demo program of End-to-end Scene Text Detection and Recognition: " << endl;
cout << "Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:" << endl;
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
Mat image;
if(argc>1)
image = imread(argv[1]);
else
{
cout << " Usage: " << argv[0] << " <input_image> [<gt_word1> ... <gt_wordN>]" << endl;
return(0);
}
cout << "IMG_W=" << image.cols << endl;
cout << "IMG_H=" << image.rows << endl;
/*Text Detection*/
// Extract channels to be processed individually
vector<Mat> channels;
Mat grey;
cvtColor(image,grey,COLOR_RGB2GRAY);
// Notice here we are only using grey channel, see textdetection.cpp for example with more channels
channels.push_back(grey);
channels.push_back(255-grey);
double t_d = (double)getTickCount();
// Create ERFilter objects with the 1st and 2nd stage default classifiers
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
vector<vector<ERStat> > regions(channels.size());
// Apply the default cascade classifier to each independent channel (could be done in parallel)
for (int c=0; c<(int)channels.size(); c++)
{
er_filter1->run(channels[c], regions[c]);
er_filter2->run(channels[c], regions[c]);
}
cout << "TIME_REGION_DETECTION = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
Mat out_img_decomposition= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
vector<Vec2i> tmp_group;
for (int i=0; i<(int)regions.size(); i++)
{
for (int j=0; j<(int)regions[i].size();j++)
{
tmp_group.push_back(Vec2i(i,j));
}
Mat tmp= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, tmp_group, tmp);
if (i > 0)
tmp = tmp / 2;
out_img_decomposition = out_img_decomposition | tmp;
tmp_group.clear();
}
double t_g = (double)getTickCount();
// Detect character groups
vector< vector<Vec2i> > nm_region_groups;
vector<Rect> nm_boxes;
erGrouping(image, channels, regions, nm_region_groups, nm_boxes,ERGROUPING_ORIENTATION_HORIZ);
cout << "TIME_GROUPING = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
/*Text Recognition (OCR)*/
double t_r = (double)getTickCount();
OCRTesseract* ocr = new OCRTesseract();
cout << "TIME_OCR_INITIALIZATION = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
string output;
Mat out_img;
Mat out_img_detection;
Mat out_img_segmentation = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
image.copyTo(out_img);
image.copyTo(out_img_detection);
float scale_img = 600.f/image.rows;
float scale_font = (float)(2-scale_img)/1.4f;
vector<string> words_detection;
t_r = (double)getTickCount();
for (int i=0; i<(int)nm_boxes.size(); i++)
{
rectangle(out_img_detection, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(0,255,255), 3);
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, nm_region_groups[i], group_img);
Mat group_segmentation;
group_img.copyTo(group_segmentation);
//image(nm_boxes[i]).copyTo(group_img);
group_img(nm_boxes[i]).copyTo(group_img);
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
vector<Rect> boxes;
vector<string> words;
vector<float> confidences;
ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
output.erase(remove(output.begin(), output.end(), '\n'), output.end());
//cout << "OCR output = \"" << output << "\" lenght = " << output.size() << endl;
if (output.size() < 3)
continue;
for (int j=0; j<(int)boxes.size(); j++)
{
boxes[j].x += nm_boxes[i].x-15;
boxes[j].y += nm_boxes[i].y-15;
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
if ((words[j].size() < 2) || (confidences[j] < 51) ||
((words[j].size()==2) && (words[j][0] == words[j][1])) ||
((words[j].size()< 4) && (confidences[j] < 60)) ||
isRepetitive(words[j]))
continue;
words_detection.push_back(words[j]);
rectangle(out_img, boxes[j].tl(), boxes[j].br(), Scalar(255,0,255),3);
Size word_size = getTextSize(words[j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
rectangle(out_img, boxes[j].tl()-Point(3,word_size.height+3), boxes[j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
putText(out_img, words[j], boxes[j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
out_img_segmentation = out_img_segmentation | group_segmentation;
}
}
cout << "TIME_OCR = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
/* Recognition evaluation with (approximate) hungarian matching and edit distances */
if(argc>2)
{
int num_gt_characters = 0;
vector<string> words_gt;
for (int i=2; i<argc; i++)
{
string s = string(argv[i]);
if (s.size() > 0)
{
words_gt.push_back(string(argv[i]));
//cout << " GT word " << words_gt[words_gt.size()-1] << endl;
num_gt_characters += (int)(words_gt[words_gt.size()-1].size());
}
}
if (words_detection.empty())
{
//cout << endl << "number of characters in gt = " << num_gt_characters << endl;
cout << "TOTAL_EDIT_DISTANCE = " << num_gt_characters << endl;
cout << "EDIT_DISTANCE_RATIO = 1" << endl;
}
else
{
sort(words_gt.begin(),words_gt.end(),sort_by_lenght);
int max_dist=0;
vector< vector<int> > assignment_mat;
for (int i=0; i<(int)words_gt.size(); i++)
{
vector<int> assignment_row(words_detection.size(),0);
assignment_mat.push_back(assignment_row);
for (int j=0; j<(int)words_detection.size(); j++)
{
assignment_mat[i][j] = (int)(edit_distance(words_gt[i],words_detection[j]));
max_dist = max(max_dist,assignment_mat[i][j]);
}
}
vector<int> words_detection_matched;
int total_edit_distance = 0;
int tp=0, fp=0, fn=0;
for (int search_dist=0; search_dist<=max_dist; search_dist++)
{
for (int i=0; i<(int)assignment_mat.size(); i++)
{
int min_dist_idx = (int)distance(assignment_mat[i].begin(),
min_element(assignment_mat[i].begin(),assignment_mat[i].end()));
if (assignment_mat[i][min_dist_idx] == search_dist)
{
//cout << " GT word \"" << words_gt[i] << "\" best match \"" << words_detection[min_dist_idx] << "\" with dist " << assignment_mat[i][min_dist_idx] << endl;
if(search_dist == 0)
tp++;
else { fp++; fn++; }
total_edit_distance += assignment_mat[i][min_dist_idx];
words_detection_matched.push_back(min_dist_idx);
words_gt.erase(words_gt.begin()+i);
assignment_mat.erase(assignment_mat.begin()+i);
for (int j=0; j<(int)assignment_mat.size(); j++)
{
assignment_mat[j][min_dist_idx]=INT_MAX;
}
i--;
}
}
}
for (int j=0; j<(int)words_gt.size(); j++)
{
//cout << " GT word \"" << words_gt[j] << "\" no match found" << endl;
fn++;
total_edit_distance += (int)words_gt[j].size();
}
for (int j=0; j<(int)words_detection.size(); j++)
{
if (find(words_detection_matched.begin(),words_detection_matched.end(),j) == words_detection_matched.end())
{
//cout << " Detection word \"" << words_detection[j] << "\" no match found" << endl;
fp++;
total_edit_distance += (int)words_detection[j].size();
}
}
//cout << endl << "number of characters in gt = " << num_gt_characters << endl;
cout << "TOTAL_EDIT_DISTANCE = " << total_edit_distance << endl;
cout << "EDIT_DISTANCE_RATIO = " << (float)total_edit_distance / num_gt_characters << endl;
cout << "TP = " << tp << endl;
cout << "FP = " << fp << endl;
cout << "FN = " << fn << endl;
}
}
//resize(out_img_detection,out_img_detection,Size(image.cols*scale_img,image.rows*scale_img));
//imshow("detection", out_img_detection);
//imwrite("detection.jpg", out_img_detection);
//resize(out_img,out_img,Size(image.cols*scale_img,image.rows*scale_img));
namedWindow("recognition",WINDOW_NORMAL);
imshow("recognition", out_img);
waitKey(0);
//imwrite("recognition.jpg", out_img);
//imwrite("segmentation.jpg", out_img_segmentation);
//imwrite("decomposition.jpg", out_img_decomposition);
return 0;
}
size_t min(size_t x, size_t y, size_t z)
{
return x < y ? min(x,z) : min(y,z);
}
size_t edit_distance(const string& A, const string& B)
{
size_t NA = A.size();
size_t NB = B.size();
vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));
for (size_t a = 0; a <= NA; ++a)
M[a][0] = a;
for (size_t b = 0; b <= NB; ++b)
M[0][b] = b;
for (size_t a = 1; a <= NA; ++a)
for (size_t b = 1; b <= NB; ++b)
{
size_t x = M[a-1][b] + 1;
size_t y = M[a][b-1] + 1;
size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
M[a][b] = min(x,y,z);
}
return M[A.size()][B.size()];
}
bool isRepetitive(const string& s)
{
int count = 0;
for (int i=0; i<(int)s.size(); i++)
{
if ((s[i] == 'i') ||
(s[i] == 'l') ||
(s[i] == 'I'))
count++;
}
if (count > ((int)s.size()+1)/2)
{
return true;
}
return false;
}
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation)
{
for (int r=0; r<(int)group.size(); r++)
{
ERStat er = regions[group[r][0]][group[r][1]];
if (er.parent != NULL) // deprecate the root region
{
int newMaskVal = 255;
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
}
}
}
bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());}