You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
14 KiB
14 KiB
This is a compilation of the general functions implemented in this module.
function KeyPoint(x::Float32, y::Float32, _size::Float32, _angle::Float32, _response::Float32, _octave::Int32, _class_id::Int32)
KeyPoint(x::Float32, y::Float32, _size::Float32; _angle::Float32 = Float32(-1), _response::Float32 = Float32(0), _octave::Int32 = Int32(0), _class_id::Int32 = Int32(-1)) = KeyPoint(x, y, _size, _angle, _response, _octave, _class_id)
function VideoCapture(filename::String, apiPreference::Int32)
VideoCapture(filename::String; apiPreference::Int32 = Int32(CAP_ANY)) = VideoCapture(filename, apiPreference)
function VideoCapture(index::Int32, apiPreference::Int32)
VideoCapture(index::Int32; apiPreference::Int32 = Int32(CAP_ANY)) = VideoCapture(index, apiPreference)
function CascadeClassifier(filename::String)
function detect(cobj::cv_Ptr{T}, image::InputArray, mask::InputArray) where {T <: Feature2D}
detect(cobj::cv_Ptr{T}, image::InputArray; mask::InputArray = (CxxMat())) where {T <: Feature2D} = detect(cobj, image, mask)
function detectMultiScale(cobj::CascadeClassifier, image::InputArray, scaleFactor::Float64, minNeighbors::Int32, flags::Int32, minSize::Size{Int32}, maxSize::Size{Int32})
detectMultiScale(cobj::CascadeClassifier, image::InputArray; scaleFactor::Float64 = Float64(1.1), minNeighbors::Int32 = Int32(3), flags::Int32 = Int32(0), minSize::Size{Int32} = (Size{Int32}(0,0)), maxSize::Size{Int32} = (Size{Int32}(0,0))) = detectMultiScale(cobj, image, scaleFactor, minNeighbors, flags, minSize, maxSize)
function empty(cobj::CascadeClassifier)
function read(cobj::VideoCapture, image::InputArray)
read(cobj::VideoCapture; image::InputArray = (CxxMat())) = read(cobj, image)
function release(cobj::VideoCapture)
function SimpleBlobDetector_create(parameters::SimpleBlobDetector_Params)
SimpleBlobDetector_create(; parameters::SimpleBlobDetector_Params = (SimpleBlobDetector_Params())) = SimpleBlobDetector_create(parameters)
function imread(filename::String, flags::Int32)
imread(filename::String; flags::Int32 = Int32(IMREAD_COLOR)) = imread(filename, flags)
function imshow(winname::String, mat::InputArray)
function namedWindow(winname::String, flags::Int32)
namedWindow(winname::String; flags::Int32 = Int32(WINDOW_AUTOSIZE)) = namedWindow(winname, flags)
function waitKey(delay::Int32)
waitKey(; delay::Int32 = Int32(0)) = waitKey(delay)
function rectangle(img::InputArray, pt1::Point{Int32}, pt2::Point{Int32}, color::Scalar, thickness::Int32, lineType::Int32, shift::Int32)
rectangle(img::InputArray, pt1::Point{Int32}, pt2::Point{Int32}, color::Scalar; thickness::Int32 = Int32(1), lineType::Int32 = Int32(LINE_8), shift::Int32 = Int32(0)) = rectangle(img, pt1, pt2, color, thickness, lineType, shift)
function cvtColor(src::InputArray, code::Int32, dst::InputArray, dstCn::Int32)
cvtColor(src::InputArray, code::Int32; dst::InputArray = (CxxMat()), dstCn::Int32 = Int32(0)) = cvtColor(src, code, dst, dstCn)
function equalizeHist(src::InputArray, dst::InputArray)
equalizeHist(src::InputArray; dst::InputArray = (CxxMat())) = equalizeHist(src, dst)
function destroyAllWindows()
function getTextSize(text::String, fontFace::Int32, fontScale::Float64, thickness::Int32)
function putText(img::InputArray, text::String, org::Point{Int32}, fontFace::Int32, fontScale::Float64, color::Scalar, thickness::Int32, lineType::Int32, bottomLeftOrigin::Bool)
putText(img::InputArray, text::String, org::Point{Int32}, fontFace::Int32, fontScale::Float64, color::Scalar; thickness::Int32 = Int32(1), lineType::Int32 = Int32(LINE_8), bottomLeftOrigin::Bool = (false)) = putText(img, text, org, fontFace, fontScale, color, thickness, lineType, bottomLeftOrigin)
This is a list of functions implemented from the dnn
module.
function finalize(cobj::cv_Ptr{T}, inputs::Array{InputArray, 1}, outputs::Array{InputArray, 1}) where {T <: dnn_Layer}
finalize(cobj::cv_Ptr{T}, inputs::Array{InputArray, 1}; outputs::Array{InputArray, 1} = (Array{InputArray, 1}())) where {T <: dnn_Layer} = finalize(cobj, inputs, outputs)
function outputNameToIndex(cobj::cv_Ptr{T}, outputName::String) where {T <: dnn_Layer}
function empty(cobj::dnn_Net)
function dump(cobj::dnn_Net)
function dumpToFile(cobj::dnn_Net, path::String)
function getLayerId(cobj::dnn_Net, layer::String)
function getLayerNames(cobj::dnn_Net)
function getLayer(cobj::dnn_Net, layerId::dnn_LayerId)
function connect(cobj::dnn_Net, outPin::String, inpPin::String)
function setInputsNames(cobj::dnn_Net, inputBlobNames::Array{String, 1})
function setInputShape(cobj::dnn_Net, inputName::String, shape::Array{Int32, 1})
function forward(cobj::dnn_Net, outputName::String)
forward(cobj::dnn_Net; outputName::String = (String())) = forward(cobj, outputName)
function forward(cobj::dnn_Net, outputBlobs::Array{InputArray, 1}, outputName::String)
function forward(cobj::dnn_Net, outBlobNames::Array{String, 1}, outputBlobs::Array{InputArray, 1})
forward(cobj::dnn_Net, outBlobNames::Array{String, 1}; outputBlobs::Array{InputArray, 1} = (Array{InputArray, 1}())) = forward(cobj, outBlobNames, outputBlobs)
function forwardAsync(cobj::dnn_Net, outputName::String)
forwardAsync(cobj::dnn_Net; outputName::String = (String())) = forwardAsync(cobj, outputName)
function setHalideScheduler(cobj::dnn_Net, scheduler::String)
function setPreferableBack(cobj::dnn_Net, backId::Int32)
function setPreferableTarget(cobj::dnn_Net, targetId::Int32)
function setInput(cobj::dnn_Net, blob::InputArray, name::String, scalefactor::Float64, mean::Scalar)
setInput(cobj::dnn_Net, blob::InputArray; name::String = (""), scalefactor::Float64 = Float64(1.0), mean::Scalar = ()) = setInput(cobj, blob, name, scalefactor, mean)
function setParam(cobj::dnn_Net, layer::dnn_LayerId, numParam::Int32, blob::InputArray)
function getParam(cobj::dnn_Net, layer::dnn_LayerId, numParam::Int32)
getParam(cobj::dnn_Net, layer::dnn_LayerId; numParam::Int32 = Int32(0)) = getParam(cobj, layer, numParam)
function getUnconnectedOutLayers(cobj::dnn_Net)
function getUnconnectedOutLayersNames(cobj::dnn_Net)
function getLayersShapes(cobj::dnn_Net, netInputShapes::Array{Array{Int32, 1}, 1})
function getLayersShapes(cobj::dnn_Net, netInputShape::Array{Int32, 1})
function getFLOPS(cobj::dnn_Net, netInputShapes::Array{Array{Int32, 1}, 1})
function getFLOPS(cobj::dnn_Net, netInputShape::Array{Int32, 1})
function getFLOPS(cobj::dnn_Net, layerId::Int32, netInputShapes::Array{Array{Int32, 1}, 1})
function getFLOPS(cobj::dnn_Net, layerId::Int32, netInputShape::Array{Int32, 1})
function getLayerTypes(cobj::dnn_Net)
function getLayersCount(cobj::dnn_Net, layerType::String)
function getMemoryConsumption(cobj::dnn_Net, netInputShape::Array{Int32, 1})
function getMemoryConsumption(cobj::dnn_Net, layerId::Int32, netInputShapes::Array{Array{Int32, 1}, 1})
function getMemoryConsumption(cobj::dnn_Net, layerId::Int32, netInputShape::Array{Int32, 1})
function enableFusion(cobj::dnn_Net, fusion::Bool)
function getPerfProfile(cobj::dnn_Net)
function setInputSize(cobj::dnn_Model, size::Size)
function setInputSize(cobj::dnn_Model, width::Int32, height::Int32)
function setInputMean(cobj::dnn_Model, mean::Scalar)
function setInputScale(cobj::dnn_Model, scale::Float64)
function setInputCrop(cobj::dnn_Model, crop::Bool)
function setInputSwapRB(cobj::dnn_Model, swapRB::Bool)
function setInputParams(cobj::dnn_Model, scale::Float64, size::Size, mean::Scalar, swapRB::Bool, crop::Bool)
setInputParams(cobj::dnn_Model; scale::Float64 = Float64(1.0), size::Size = (SizeOP()), mean::Scalar = (), swapRB::Bool = (false), crop::Bool = (false)) = setInputParams(cobj, scale, size, mean, swapRB, crop)
function predict(cobj::dnn_Model, frame::InputArray, outs::Array{InputArray, 1})
predict(cobj::dnn_Model, frame::InputArray; outs::Array{InputArray, 1} = (Array{InputArray, 1}())) = predict(cobj, frame, outs)
function dnn_Model(model::String, config::String)
dnn_Model(model::String; config::String = ("")) = dnn_Model(model, config)
function dnn_Model(network::dnn_Net)
function classify(cobj::dnn_ClassificationModel, frame::InputArray)
function dnn_ClassificationModel(model::String, config::String)
dnn_ClassificationModel(model::String; config::String = ("")) = dnn_ClassificationModel(model, config)
function dnn_ClassificationModel(network::dnn_Net)
function estimate(cobj::dnn_KeypointsModel, frame::InputArray, thresh::Float32)
estimate(cobj::dnn_KeypointsModel, frame::InputArray; thresh::Float32 = Float32(0.5)) = estimate(cobj, frame, thresh)
function dnn_KeypointsModel(model::String, config::String)
dnn_KeypointsModel(model::String; config::String = ("")) = dnn_KeypointsModel(model, config)
function dnn_KeypointsModel(network::dnn_Net)
function segment(cobj::dnn_SegmentationModel, frame::InputArray, mask::InputArray)
segment(cobj::dnn_SegmentationModel, frame::InputArray; mask::InputArray = (CxxMat())) = segment(cobj, frame, mask)
function dnn_SegmentationModel(model::String, config::String)
dnn_SegmentationModel(model::String; config::String = ("")) = dnn_SegmentationModel(model, config)
function dnn_SegmentationModel(network::dnn_Net)
function detect(cobj::dnn_DetectionModel, frame::InputArray, confThreshold::Float32, nmsThreshold::Float32)
detect(cobj::dnn_DetectionModel, frame::InputArray; confThreshold::Float32 = Float32(0.5), nmsThreshold::Float32 = Float32(0.0)) = detect(cobj, frame, confThreshold, nmsThreshold)
function dnn_DetectionModel(model::String, config::String)
dnn_DetectionModel(model::String; config::String = ("")) = dnn_DetectionModel(model, config)
function dnn_DetectionModel(network::dnn_Net)
function Net_readFromModelOptimizer(xml::String, bin::String)
function Net_readFromModelOptimizer(bufferModelConfig::Array{UInt8, 1}, bufferWeights::Array{UInt8, 1})
function readNetFromDarknet(cfgFile::String, darknetModel::String)
readNetFromDarknet(cfgFile::String; darknetModel::String = (String())) = readNetFromDarknet(cfgFile, darknetModel)
function readNetFromDarknet(bufferCfg::Array{UInt8, 1}, bufferModel::Array{UInt8, 1})
readNetFromDarknet(bufferCfg::Array{UInt8, 1}; bufferModel::Array{UInt8, 1} = (stdggvectoriUInt8kOP())) = readNetFromDarknet(bufferCfg, bufferModel)
function readNetFromCaffe(prototxt::String, caffeModel::String)
readNetFromCaffe(prototxt::String; caffeModel::String = (String())) = readNetFromCaffe(prototxt, caffeModel)
function readNetFromCaffe(bufferProto::Array{UInt8, 1}, bufferModel::Array{UInt8, 1})
readNetFromCaffe(bufferProto::Array{UInt8, 1}; bufferModel::Array{UInt8, 1} = (stdggvectoriUInt8kOP())) = readNetFromCaffe(bufferProto, bufferModel)
function readNetFromTensorflow(model::String, config::String)
readNetFromTensorflow(model::String; config::String = (String())) = readNetFromTensorflow(model, config)
function readNetFromTensorflow(bufferModel::Array{UInt8, 1}, bufferConfig::Array{UInt8, 1})
readNetFromTensorflow(bufferModel::Array{UInt8, 1}; bufferConfig::Array{UInt8, 1} = (stdggvectoriUInt8kOP())) = readNetFromTensorflow(bufferModel, bufferConfig)
function readNetFromTorch(model::String, isBinary::Bool, evaluate::Bool)
readNetFromTorch(model::String; isBinary::Bool = (true), evaluate::Bool = (true)) = readNetFromTorch(model, isBinary, evaluate)
function readNet(model::String, config::String, framework::String)
readNet(model::String; config::String = (""), framework::String = ("")) = readNet(model, config, framework)
function readNet(framework::String, bufferModel::Array{UInt8, 1}, bufferConfig::Array{UInt8, 1})
readNet(framework::String, bufferModel::Array{UInt8, 1}; bufferConfig::Array{UInt8, 1} = (stdggvectoriUInt8kOP())) = readNet(framework, bufferModel, bufferConfig)
function readTorchBlob(filename::String, isBinary::Bool)
readTorchBlob(filename::String; isBinary::Bool = (true)) = readTorchBlob(filename, isBinary)
function readNetFromModelOptimizer(xml::String, bin::String)
function readNetFromModelOptimizer(bufferModelConfig::Array{UInt8, 1}, bufferWeights::Array{UInt8, 1})
function readNetFromONNX(onnxFile::String)
function readNetFromONNX(buffer::Array{UInt8, 1})
function readTensorFromONNX(path::String)
function blobFromImage(image::InputArray, scalefactor::Float64, size::Size, mean::Scalar, swapRB::Bool, crop::Bool, ddepth::Int32)
blobFromImage(image::InputArray; scalefactor::Float64 = Float64(1.0), size::Size = (SizeOP()), mean::Scalar = (), swapRB::Bool = (false), crop::Bool = (false), ddepth::Int32 = Int32(CV_32F)) = blobFromImage(image, scalefactor, size, mean, swapRB, crop, ddepth)
function blobFromImages(images::Array{InputArray, 1}, scalefactor::Float64, size::Size, mean::Scalar, swapRB::Bool, crop::Bool, ddepth::Int32)
blobFromImages(images::Array{InputArray, 1}; scalefactor::Float64 = Float64(1.0), size::Size = (SizeOP()), mean::Scalar = (), swapRB::Bool = (false), crop::Bool = (false), ddepth::Int32 = Int32(CV_32F)) = blobFromImages(images, scalefactor, size, mean, swapRB, crop, ddepth)
function imagesFromBlob(blob_::InputArray, images_::Array{InputArray, 1})
imagesFromBlob(blob_::InputArray; images_::Array{InputArray, 1} = (Array{InputArray, 1}())) = imagesFromBlob(blob_, images_)
function shrinkCaffeModel(src::String, dst::String, layersTypes::Array{String, 1})
shrinkCaffeModel(src::String, dst::String; layersTypes::Array{String, 1} = (stdggvectoriStringkOP())) = shrinkCaffeModel(src, dst, layersTypes)
function writeTextGraph(model::String, output::String)
function NMSBoxes(bboxes::Array{Rect{Float64}, 1}, scores::Array{Float32, 1}, score_threshold::Float32, nms_threshold::Float32, eta::Float32, top_k::Int32)
NMSBoxes(bboxes::Array{Rect{Float64}, 1}, scores::Array{Float32, 1}, score_threshold::Float32, nms_threshold::Float32; eta::Float32 = Float32(1.0), top_k::Int32 = Int32(0)) = NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta, top_k)
function NMSBoxesRotated(bboxes::Array{RotatedRect, 1}, scores::Array{Float32, 1}, score_threshold::Float32, nms_threshold::Float32, eta::Float32, top_k::Int32)
NMSBoxesRotated(bboxes::Array{RotatedRect, 1}, scores::Array{Float32, 1}, score_threshold::Float32, nms_threshold::Float32; eta::Float32 = Float32(1.0), top_k::Int32 = Int32(0)) = NMSBoxesRotated(bboxes, scores, score_threshold, nms_threshold, eta, top_k)