Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

142 lines
4.3 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static std::string _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
TEST(Test_Caffe, read_gtsrb)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("gtsrb.prototxt"), "");
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
}
TEST(Test_Caffe, read_googlenet)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("bvlc_googlenet.prototxt"), "");
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
}
#if defined(ENABLE_CAFFE_MODEL_TESTS)
#if defined(ENABLE_CAFFE_ALEXNET_TEST) //AlexNet is disabled now
TEST(Reproducibility_AlexNet, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("bvlc_alexnet.prototxt"), _tf("bvlc_alexnet.caffemodel"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
Size inputSize(227, 227);
if (sample.size() != inputSize)
resize(sample, sample, inputSize);
net.setBlob(".data", dnn::Blob::fromImages(sample));
net.forward();
Blob out = net.getBlob("prob");
Blob ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
normAssert(ref, out);
}
#endif
#if defined(ENABLE_CAFFE_FCN_TEST)
TEST(Reproducibility_FCN, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("fcn8s-heavy-pascal.prototxt"), _tf("fcn8s-heavy-pascal.caffemodel"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("street.png"));
ASSERT_TRUE(!sample.empty());
Size inputSize(500, 500);
if (sample.size() != inputSize)
resize(sample, sample, inputSize);
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
net.setBlob(".data", dnn::Blob::fromImages(sample));
net.forward();
Blob out = net.getBlob("score");
Blob ref = blobFromNPY(_tf("caffe_fcn8s_prob.npy"));
normAssert(ref, out);
}
#endif
#endif
}