You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
12 KiB
361 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/calib3d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const string STRUCTURED_LIGHT_DIR = "structured_light"; |
|
const string FOLDER_DATA = "data"; |
|
|
|
/****************************************************************************************\ |
|
* Plane test * |
|
\****************************************************************************************/ |
|
class CV_PlaneTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_PlaneTest(); |
|
~CV_PlaneTest(); |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// From rgbd module: since I needed the distance method of plane class, I copied the class from rgb module |
|
// it will be made a pull request to make Plane class public |
|
|
|
/** Structure defining a plane. The notations are from the second paper */ |
|
class PlaneBase |
|
{ |
|
public: |
|
PlaneBase(const Vec3f & m, const Vec3f &n_in, int index) : |
|
index_(index), |
|
n_(n_in), |
|
m_sum_(Vec3f(0, 0, 0)), |
|
m_(m), |
|
Q_(Matx33f::zeros()), |
|
mse_(0), |
|
K_(0) |
|
{ |
|
UpdateD(); |
|
} |
|
|
|
virtual ~PlaneBase() |
|
{ |
|
} |
|
|
|
/** Compute the distance to the plane. This will be implemented by the children to take into account different |
|
* sensor models |
|
* @param p_j |
|
* @return |
|
*/ |
|
virtual |
|
float |
|
distance(const Vec3f& p_j) const = 0; |
|
|
|
/** The d coefficient in the plane equation ax+by+cz+d = 0 |
|
* @return |
|
*/ |
|
inline float d() const |
|
{ |
|
return d_; |
|
} |
|
|
|
/** The normal to the plane |
|
* @return the normal to the plane |
|
*/ |
|
const Vec3f & |
|
n() const |
|
{ |
|
return n_; |
|
} |
|
|
|
/** Update the different coefficients of the plane, based on the new statistics |
|
*/ |
|
void UpdateParameters() |
|
{ |
|
if( empty() ) |
|
return; |
|
m_ = m_sum_ / K_; |
|
// Compute C |
|
Matx33f C = Q_ - m_sum_ * m_.t(); |
|
|
|
// Compute n |
|
SVD svd(C); |
|
n_ = Vec3f(svd.vt.at<float>(2, 0), svd.vt.at<float>(2, 1), svd.vt.at<float>(2, 2)); |
|
mse_ = svd.w.at<float>(2) / K_; |
|
|
|
UpdateD(); |
|
} |
|
|
|
/** Update the different sum of point and sum of point*point.t() |
|
*/ |
|
void UpdateStatistics(const Vec3f & point, const Matx33f & Q_local) |
|
{ |
|
m_sum_ += point; |
|
Q_ += Q_local; |
|
++K_; |
|
} |
|
|
|
inline size_t empty() const |
|
{ |
|
return K_ == 0; |
|
} |
|
|
|
inline int K() const |
|
{ |
|
return K_; |
|
} |
|
/** The index of the plane */ |
|
int index_; |
|
protected: |
|
/** The 4th coefficient in the plane equation ax+by+cz+d = 0 */ |
|
float d_; |
|
/** Normal of the plane */ |
|
Vec3f n_; |
|
private: |
|
inline void UpdateD() |
|
{ |
|
// Hessian form (d = nc . p_plane (centroid here) + p) |
|
//d = -1 * n.dot (xyz_centroid);//d =-axP+byP+czP |
|
d_ = -m_.dot(n_); |
|
} |
|
/** The sum of the points */ |
|
Vec3f m_sum_; |
|
/** The mean of the points */ |
|
Vec3f m_; |
|
/** The sum of pi * pi^\top */ |
|
Matx33f Q_; |
|
/** The different matrices we need to update */ |
|
Matx33f C_; |
|
float mse_; |
|
/** the number of points that form the plane */ |
|
int K_; |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/** Basic planar child, with no sensor error model |
|
*/ |
|
class Plane : public PlaneBase |
|
{ |
|
public: |
|
Plane(const Vec3f & m, const Vec3f &n_in, int index) : |
|
PlaneBase(m, n_in, index) |
|
{ |
|
} |
|
|
|
/** The computed distance is perfect in that case |
|
* @param p_j the point to compute its distance to |
|
* @return |
|
*/ |
|
float distance(const Vec3f& p_j) const |
|
{ |
|
return std::abs(float(p_j.dot(n_) + d_)); |
|
} |
|
}; |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
protected: |
|
void run( int ); |
|
|
|
}; |
|
|
|
CV_PlaneTest::CV_PlaneTest(){} |
|
|
|
CV_PlaneTest::~CV_PlaneTest(){} |
|
|
|
void CV_PlaneTest::run( int ) |
|
{ |
|
string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/"; |
|
structured_light::GrayCodePattern::Params params; |
|
params.width = 1280; |
|
params.height = 800; |
|
// Set up GraycodePattern with params |
|
Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params ); |
|
size_t numberOfPatternImages = graycode->getNumberOfPatternImages(); |
|
|
|
|
|
FileStorage fs( folder + "calibrationParameters.yml", FileStorage::READ ); |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
FileStorage fs2( folder + "gt_plane.yml", FileStorage::READ ); |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
// Loading ground truth plane parameters |
|
Vec4f plane_coefficients; |
|
Vec3f m; |
|
fs2["plane_coefficients"] >> plane_coefficients; |
|
fs2["m"] >> m; |
|
|
|
// Loading calibration parameters |
|
Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T; |
|
|
|
fs["cam1_intrinsics"] >> cam1intrinsics; |
|
fs["cam2_intrinsics"] >> cam2intrinsics; |
|
fs["cam1_distorsion"] >> cam1distCoeffs; |
|
fs["cam2_distorsion"] >> cam2distCoeffs; |
|
fs["R"] >> R; |
|
fs["T"] >> T; |
|
|
|
// Loading white and black images |
|
vector<Mat> blackImages; |
|
vector<Mat> whiteImages; |
|
|
|
blackImages.resize( 2 ); |
|
whiteImages.resize( 2 ); |
|
|
|
whiteImages[0] = imread( folder + "pattern_cam1_im43.jpg", 0 ); |
|
whiteImages[1] = imread( folder + "pattern_cam2_im43.jpg", 0 ); |
|
blackImages[0] = imread( folder + "pattern_cam1_im44.jpg", 0 ); |
|
blackImages[1] = imread( folder + "pattern_cam2_im44.jpg", 0 ); |
|
|
|
Size imagesSize = whiteImages[0].size(); |
|
|
|
if( ( !cam1intrinsics.data ) || ( !cam2intrinsics.data ) || ( !cam1distCoeffs.data ) || ( !cam2distCoeffs.data ) || ( !R.data ) |
|
|| ( !T.data ) || ( !whiteImages[0].data ) || ( !whiteImages[1].data ) || ( !blackImages[0].data ) |
|
|| ( !blackImages[1].data ) ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
// Computing stereo rectify parameters |
|
Mat R1, R2, P1, P2, Q; |
|
Rect validRoi[2]; |
|
stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0, |
|
-1, imagesSize, &validRoi[0], &validRoi[1] ); |
|
|
|
Mat map1x, map1y, map2x, map2y; |
|
initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y ); |
|
initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y ); |
|
|
|
vector<vector<Mat> > captured_pattern; |
|
captured_pattern.resize( 2 ); |
|
captured_pattern[0].resize( numberOfPatternImages ); |
|
captured_pattern[1].resize( numberOfPatternImages ); |
|
|
|
// Loading and rectifying pattern images |
|
for( size_t i = 0; i < numberOfPatternImages; i++ ) |
|
{ |
|
ostringstream name1; |
|
name1 << "pattern_cam1_im" << i + 1 << ".jpg"; |
|
captured_pattern[0][i] = imread( folder + name1.str(), 0 ); |
|
ostringstream name2; |
|
name2 << "pattern_cam2_im" << i + 1 << ".jpg"; |
|
captured_pattern[1][i] = imread( folder + name2.str(), 0 ); |
|
|
|
if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
} |
|
|
|
// Rectifying white and black images |
|
remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
// Setting up threshold parameters to reconstruct only the plane in foreground |
|
graycode->setBlackThreshold( 55 ); |
|
graycode->setWhiteThreshold( 10 ); |
|
|
|
// Computing the disparity map |
|
Mat disparityMap; |
|
bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages, |
|
structured_light::DECODE_3D_UNDERWORLD ); |
|
EXPECT_TRUE( decoded ); |
|
|
|
// Computing the point cloud |
|
Mat pointcloud; |
|
disparityMap.convertTo( disparityMap, CV_32FC1 ); |
|
reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 ); |
|
// from mm (unit of calibration) to m |
|
pointcloud = pointcloud / 1000; |
|
|
|
// Setting up plane with ground truth plane values |
|
Vec3f normal( plane_coefficients.val[0], plane_coefficients.val[1], plane_coefficients.val[2] ); |
|
Ptr<PlaneBase> plane = Ptr<PlaneBase>( new Plane( m, normal, 0 ) ); |
|
|
|
// Computing the distance of every point of the pointcloud from ground truth plane |
|
float sum_d = 0; |
|
int cont = 0; |
|
for( int i = 0; i < disparityMap.rows; i++ ) |
|
{ |
|
for( int j = 0; j < disparityMap.cols; j++ ) |
|
{ |
|
float value = disparityMap.at<float>( i, j ); |
|
if( value != 0 ) |
|
{ |
|
Vec3f point = pointcloud.at<Vec3f>( i, j ); |
|
sum_d += plane->distance( point ); |
|
cont++; |
|
} |
|
} |
|
} |
|
|
|
sum_d /= cont; |
|
|
|
// test pass if the mean of points distance from ground truth plane is lower than 3 mm |
|
EXPECT_LE( sum_d, 0.003 ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Test registration * |
|
\****************************************************************************************/ |
|
|
|
TEST( GrayCodePattern, plane_reconstruction ) |
|
{ |
|
CV_PlaneTest test; |
|
test.safe_run(); |
|
}
|
|
|