Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

136 lines
2.9 KiB

#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
namespace cvtest
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static String _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/layers/") + filename;
}
static void testLayer(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
{
String prototxt = _tf(basename + ".prototxt");
String caffemodel = _tf(basename + ".caffemodel");
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
String outfile = _tf(basename + ".npy");
Net net;
{
Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Blob inp = blobFromNPY(inpfile);
Blob ref = blobFromNPY(outfile);
net.setBlob(".input", inp);
net.forward();
Blob out = net.getBlob("output");
normAssert(ref, out);
}
TEST(Layer_Test_Softmax, Accuracy)
{
testLayer("layer_softmax");
}
TEST(Layer_Test_LRN_spatial, Accuracy)
{
testLayer("layer_lrn_spatial");
}
TEST(Layer_Test_LRN_channels, Accuracy)
{
testLayer("layer_lrn_channels");
}
TEST(Layer_Test_Convolution, Accuracy)
{
testLayer("layer_convolution", true);
}
//TODO: move this test into separate file
TEST(Layer_Test_Convolution, AccuracyOCL)
{
if (cv::ocl::haveOpenCL())
{
cv::ocl::setUseOpenCL(true);
testLayer("layer_convolution", true);
cv::ocl::setUseOpenCL(false);
}
}
TEST(Layer_Test_InnerProduct, Accuracy)
{
testLayer("layer_inner_product", true);
}
TEST(Layer_Test_Pooling_max, Accuracy)
{
testLayer("layer_pooling_max");
}
TEST(Layer_Test_Pooling_ave, Accuracy)
{
testLayer("layer_pooling_ave");
}
TEST(Layer_Test_DeConvolution, Accuracy)
{
testLayer("layer_deconvolution", true, false);
}
TEST(Layer_Test_MVN, Accuracy)
{
testLayer("layer_mvn");
}
TEST(Layer_Test_Reshape, squeeze)
{
LayerParams params;
params.set("axis", 2);
params.set("num_axes", 1);
Blob inp(BlobShape(4, 3, 1, 2));
std::vector<Blob*> inpVec(1, &inp);
std::vector<Blob> outVec;
Ptr<Layer> rl = LayerRegister::createLayerInstance("Reshape", params);
rl->allocate(inpVec, outVec);
rl->forward(inpVec, outVec);
EXPECT_EQ(outVec[0].shape(), BlobShape(Vec3i(4, 3, 2)));
}
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Blob input(BlobShape(Vec2i(6, 12)));
RNG rng(0);
rng.fill(input.getMatRef(), RNG::UNIFORM, -1, 1);
net.setBlob(".input", input);
net.forward();
Blob output = net.getBlob("output");
normAssert(input, output);
}
}