You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
695 lines
24 KiB
695 lines
24 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <vector> |
|
#include <algorithm> |
|
#include <iterator> |
|
#include <iostream> |
|
#include <cmath> |
|
|
|
#include "opencv2/ximpgroc/structured_edge_detection.hpp" |
|
|
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/core/core_c.h" |
|
|
|
#include "advanced_types.hpp" |
|
#include "opencv2/core/types.hpp" |
|
#include "opencv2/core/types_c.h" |
|
|
|
|
|
/********************* Helper functions *********************/ |
|
|
|
/*! |
|
* Lightweight wrapper over cv::resize |
|
* |
|
* \param src : source image to resize |
|
* \param dst : destination image size |
|
* \return resized image |
|
*/ |
|
static cv::Mat imresize(const cv::Mat &src, const cv::Size &nSize) |
|
{ |
|
cv::Mat dst; |
|
if (nSize.width < src.size().width |
|
&& nSize.height < src.size().height) |
|
cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_AREA); |
|
else |
|
cv::resize(src, dst, nSize, 0.0, 0.0, cv::INTER_LINEAR); |
|
|
|
return dst; |
|
} |
|
|
|
/*! |
|
* The function filters src with triangle filter with radius equal rad |
|
* |
|
* \param src : source image to filter |
|
* \param rad : radius of filtering kernel |
|
* \return filtering result |
|
*/ |
|
static cv::Mat imsmooth(const cv::Mat &src, const int rad) |
|
{ |
|
if (rad == 0) |
|
return src; |
|
else |
|
{ |
|
const float p = 12/rad/(rad + 2) - 2; |
|
cv::Mat dst; |
|
|
|
if (rad <= 1) |
|
{ |
|
CV_INIT_VECTOR(kernelXY, float, {1/(p + 2), p/(p + 2), 1/(p + 2)}); |
|
cv::sepFilter2D(src, dst, -1, kernelXY, kernelXY); |
|
} |
|
else |
|
{ |
|
float nrml = CV_SQR(rad + 1); |
|
|
|
std::vector <float> kernelXY(2*rad + 1); |
|
for (int i = 0; i <= rad; ++i) |
|
{ |
|
kernelXY[2*rad - i] = (i + 1) / nrml; |
|
kernelXY[i] = (i + 1) / nrml; |
|
} |
|
sepFilter2D(src, dst, -1, kernelXY, kernelXY); |
|
} |
|
|
|
return dst; |
|
} |
|
} |
|
|
|
/*! |
|
* The function implements rgb to luv conversion in a way similar |
|
* to UCSD computer vision toolbox |
|
* |
|
* \param src : source image (RGB, float, in [0;1]) to convert |
|
* \return converted image in luv colorspace |
|
*/ |
|
static cv::Mat rgb2luv(const cv::Mat &src) |
|
{ |
|
cv::Mat dst(src.size(), src.type()); |
|
|
|
const float a = CV_CUBE(29.0f)/27; |
|
const float y0 = 8.0f/a; |
|
|
|
const float mX[] = {0.430574f, 0.341550f, 0.178325f}; |
|
const float mY[] = {0.222015f, 0.706655f, 0.071330f}; |
|
const float mZ[] = {0.020183f, 0.129553f, 0.939180f}; |
|
|
|
const float maxi= 1.0f/270; |
|
const float minu= -88*maxi; |
|
const float minv= -134*maxi; |
|
|
|
const float un = 0.197833f; |
|
const float vn = 0.468331f; |
|
|
|
// build (padded) lookup table for y->l conversion assuming y in [0,1] |
|
std::vector <float> lTable(1024); |
|
for (int i = 0; i < 1024; ++i) |
|
{ |
|
float y = i/1024.0f; |
|
float l = y > y0 ? 116*powf(y, 1.0f/3.0f) - 16 : y*a; |
|
|
|
lTable[i] = l*maxi; |
|
} |
|
for (int i = 0; i < 40; ++i) |
|
lTable.push_back(*--lTable.end()); |
|
|
|
const int nchannels = 3; |
|
|
|
for (int i = 0; i < src.rows; ++i) |
|
{ |
|
const float *pSrc = src.ptr<float>(i); |
|
float *pDst = dst.ptr<float>(i); |
|
|
|
for (int j = 0; j < src.cols*nchannels; j += nchannels) |
|
{ |
|
const float rgb[] = {pSrc[j + 0], pSrc[j + 1], pSrc[j + 2]}; |
|
|
|
const float xyz[] = {mX[0]*rgb[0] + mX[1]*rgb[1] + mX[2]*rgb[2], |
|
mY[0]*rgb[0] + mY[1]*rgb[1] + mY[2]*rgb[2], |
|
mZ[0]*rgb[0] + mZ[1]*rgb[1] + mZ[2]*rgb[2]}; |
|
const float nz = 1.0f/(xyz[0] + 15*xyz[1] + 3*xyz[2] + 1e-35); |
|
|
|
const float l = pDst[j] = lTable[cvFloor(1024*xyz[1])]; |
|
|
|
pDst[j + 1] = l * (13*4*xyz[0]*nz - 13*un) - minu;; |
|
pDst[j + 2] = l * (13*9*xyz[1]*nz - 13*vn) - minv; |
|
} |
|
} |
|
|
|
return dst; |
|
} |
|
|
|
/*! |
|
* The function computes gradient magnitude and weighted (with magnitude) |
|
* orientation histogram. Magnitude is additionally normalized |
|
* by dividing on imsmooth(M, gnrmRad) + 0.01; |
|
* |
|
* \param src : source image |
|
* \param magnitude : gradient magnitude |
|
* \param histogram : gradient orientation nBins-channels histogram |
|
* \param nBins : number of gradient orientations |
|
* \param pSize : factor to downscale histogram |
|
* \param gnrmRad : radius for magnitude normalization |
|
*/ |
|
static void gradientHist(const cv::Mat &src, cv::Mat &magnitude, cv::Mat &histogram, |
|
const int nBins, const int pSize, const int gnrmRad) |
|
{ |
|
cv::Mat phase, Dx, Dy; |
|
|
|
magnitude.create( src.size(), cv::DataType<float>::type ); |
|
phase.create( src.size(), cv::DataType<float>::type ); |
|
histogram.create( src.size()/float(pSize), |
|
CV_MAKETYPE(cv::DataType<float>::type, nBins) ); |
|
|
|
histogram.setTo(0); |
|
|
|
cv::Sobel( src, Dx, cv::DataType<float>::type, |
|
1, 0, 1, 1.0, 0.0, cv::BORDER_REFLECT ); |
|
cv::Sobel( src, Dy, cv::DataType<float>::type, |
|
0, 1, 1, 1.0, 0.0, cv::BORDER_REFLECT ); |
|
|
|
int nchannels = src.channels(); |
|
|
|
for (int i = 0; i < src.rows; ++i) |
|
{ |
|
const float *pDx = Dx.ptr<float>(i); |
|
const float *pDy = Dy.ptr<float>(i); |
|
|
|
float *pMagnitude = magnitude.ptr<float>(i); |
|
float *pPhase = phase.ptr<float>(i); |
|
|
|
for (int j = 0; j < src.cols*nchannels; j += nchannels) |
|
{ |
|
float fMagn = -1e-5, fdx = 0, fdy = 0; |
|
for (int k = 0; k < nchannels; ++k) |
|
{ |
|
float cMagn = CV_SQR( pDx[j + k] ) + CV_SQR( pDy[j + k] ); |
|
if (cMagn > fMagn) |
|
{ |
|
fMagn = cMagn; |
|
fdx = pDx[j + k]; |
|
fdy = pDy[j + k]; |
|
} |
|
} |
|
|
|
pMagnitude[j/nchannels] = sqrtf(fMagn); |
|
|
|
float angle = cv::fastAtan2(fdy, fdx) / 180.0f - 1.0f * (fdy < 0); |
|
if (std::fabs(fdx) + std::fabs(fdy) < 1e-5) |
|
angle = 0.5f; |
|
pPhase[j/nchannels] = angle; |
|
} |
|
} |
|
|
|
magnitude /= imsmooth( magnitude, gnrmRad ) |
|
+ 0.01*cv::Mat::ones( magnitude.size(), magnitude.type() ); |
|
|
|
for (int i = 0; i < phase.rows; ++i) |
|
{ |
|
const float *pPhase = phase.ptr<float>(i); |
|
const float *pMagn = magnitude.ptr<float>(i); |
|
|
|
float *pHist = histogram.ptr<float>(i/pSize); |
|
|
|
for (int j = 0; j < phase.cols; ++j) |
|
pHist[cvRound((j/pSize + pPhase[j])*nBins)] += pMagn[j] / CV_SQR(pSize); |
|
} |
|
} |
|
|
|
/********************* RFFeatureGetter class *********************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
class RFFeatureGetterImpl : public RFFeatureGetter |
|
{ |
|
public: |
|
/*! |
|
* Default constructor |
|
*/ |
|
RFFeatureGetterImpl() : name("RFFeatureGetter"){} |
|
|
|
/*! |
|
* The method extracts features from img and store them to features. |
|
* Extracted features are appropriate for StructuredEdgeDetection::predictEdges. |
|
* |
|
* \param src : source image (RGB, float, in [0;1]) to extract features |
|
* \param features : destination feature image |
|
* |
|
* \param gnrmRad : __rf.options.gradientNormalizationRadius |
|
* \param gsmthRad : __rf.options.gradientSmoothingRadius |
|
* \param shrink : __rf.options.shrinkNumber |
|
* \param outNum : __rf.options.numberOfOutputChannels |
|
* \param gradNum : __rf.options.numberOfGradientOrientations |
|
*/ |
|
virtual void getFeatures(const cv::Mat &src, NChannelsMat &features, |
|
const int gnrmRad, const int gsmthRad, |
|
const int shrink, const int outNum, const int gradNum) const |
|
{ |
|
cv::Mat luvImg = rgb2luv(src); |
|
|
|
std::vector <cv::Mat> featureArray; |
|
|
|
cv::Size nSize = src.size() / float(shrink); |
|
split( imresize(luvImg, nSize), featureArray ); |
|
|
|
CV_INIT_VECTOR(scales, float, {1.0f, 0.5f}); |
|
|
|
for (size_t i = 0; i < scales.size(); ++i) |
|
{ |
|
int pSize = std::max( 1, int(shrink*scales[i]) ); |
|
|
|
cv::Mat magnitude, histogram; |
|
gradientHist(/**/ imsmooth(imresize(luvImg, scales[i]*src.size()), gsmthRad), |
|
magnitude, histogram, gradNum, pSize, gnrmRad /**/); |
|
|
|
featureArray.push_back(/**/ imresize( magnitude, nSize ).clone() /**/); |
|
featureArray.push_back(/**/ imresize( histogram, nSize ).clone() /**/); |
|
} |
|
|
|
// Mixing |
|
int resType = CV_MAKETYPE(cv::DataType<float>::type, outNum); |
|
features.create(nSize, resType); |
|
|
|
std::vector <int> fromTo; |
|
for (int i = 0; i < 2*outNum; ++i) |
|
fromTo.push_back(i/2); |
|
|
|
mixChannels(featureArray, features, fromTo); |
|
} |
|
|
|
protected: |
|
/*! algorithm name */ |
|
String name; |
|
}; |
|
|
|
Ptr<RFFeatureGetter> createRFFeatureGetter(void) |
|
{ |
|
return makePtr<RFFeatureGetterImpl>(); |
|
} |
|
|
|
}; |
|
|
|
/********************* StructuredEdgeDetection class *********************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
class StructuredEdgeDetectionImpl : public StructuredEdgeDetection |
|
{ |
|
public: |
|
/*! |
|
* This constructor loads __rf model from filename |
|
* |
|
* \param filename : name of the file where the model is stored |
|
*/ |
|
StructuredEdgeDetectionImpl(const cv::String &filename, |
|
const RFFeatureGetter *howToGetFeatures) |
|
: name("StructuredEdgeDetection"), |
|
howToGetFeatures( howToGetFeatures != NULL |
|
? howToGetFeatures |
|
: createRFFeatureGetter() ) |
|
{ |
|
cv::FileStorage modelFile(filename, FileStorage::READ); |
|
CV_Assert( modelFile.isOpened() ); |
|
|
|
__rf.options.stride |
|
= modelFile["options"]["stride"]; |
|
__rf.options.shrinkNumber |
|
= modelFile["options"]["shrinkNumber"]; |
|
__rf.options.patchSize |
|
= modelFile["options"]["patchSize"]; |
|
__rf.options.patchInnerSize |
|
= modelFile["options"]["patchInnerSize"]; |
|
|
|
__rf.options.numberOfGradientOrientations |
|
= modelFile["options"]["numberOfGradientOrientations"]; |
|
__rf.options.gradientSmoothingRadius |
|
= modelFile["options"]["gradientSmoothingRadius"]; |
|
__rf.options.regFeatureSmoothingRadius |
|
= modelFile["options"]["regFeatureSmoothingRadius"]; |
|
__rf.options.ssFeatureSmoothingRadius |
|
= modelFile["options"]["ssFeatureSmoothingRadius"]; |
|
__rf.options.gradientNormalizationRadius |
|
= modelFile["options"]["gradientNormalizationRadius"]; |
|
|
|
__rf.options.selfsimilarityGridSize |
|
= modelFile["options"]["selfsimilarityGridSize"]; |
|
|
|
__rf.options.numberOfTrees |
|
= modelFile["options"]["numberOfTrees"]; |
|
__rf.options.numberOfTreesToEvaluate |
|
= modelFile["options"]["numberOfTreesToEvaluate"]; |
|
|
|
__rf.options.numberOfOutputChannels = |
|
2*(__rf.options.numberOfGradientOrientations + 1) + 3; |
|
//-------------------------------------------- |
|
|
|
cv::FileNode childs = modelFile["childs"]; |
|
cv::FileNode featureIds = modelFile["featureIds"]; |
|
|
|
std::vector <int> currentTree; |
|
|
|
for(cv::FileNodeIterator it = childs.begin(); |
|
it != childs.end(); ++it) |
|
{ |
|
(*it) >> currentTree; |
|
std::copy(currentTree.begin(), currentTree.end(), |
|
std::back_inserter(__rf.childs)); |
|
} |
|
|
|
for(cv::FileNodeIterator it = featureIds.begin(); |
|
it != featureIds.end(); ++it) |
|
{ |
|
(*it) >> currentTree; |
|
std::copy(currentTree.begin(), currentTree.end(), |
|
std::back_inserter(__rf.featureIds)); |
|
} |
|
|
|
cv::FileNode thresholds = modelFile["thresholds"]; |
|
std::vector <float> fcurrentTree; |
|
|
|
for(cv::FileNodeIterator it = thresholds.begin(); |
|
it != thresholds.end(); ++it) |
|
{ |
|
(*it) >> fcurrentTree; |
|
std::copy(fcurrentTree.begin(), fcurrentTree.end(), |
|
std::back_inserter(__rf.thresholds)); |
|
} |
|
|
|
cv::FileNode edgeBoundaries = modelFile["edgeBoundaries"]; |
|
cv::FileNode edgeBins = modelFile["edgeBins"]; |
|
|
|
for(cv::FileNodeIterator it = edgeBoundaries.begin(); |
|
it != edgeBoundaries.end(); ++it) |
|
{ |
|
(*it) >> currentTree; |
|
std::copy(currentTree.begin(), currentTree.end(), |
|
std::back_inserter(__rf.edgeBoundaries)); |
|
} |
|
|
|
for(cv::FileNodeIterator it = edgeBins.begin(); |
|
it != edgeBins.end(); ++it) |
|
{ |
|
(*it) >> currentTree; |
|
std::copy(currentTree.begin(), currentTree.end(), |
|
std::back_inserter(__rf.edgeBins)); |
|
} |
|
|
|
__rf.numberOfTreeNodes = int( __rf.childs.size() ) / __rf.options.numberOfTrees; |
|
} |
|
|
|
/*! |
|
* The function detects edges in src and draw them to dst |
|
* |
|
* \param src : source image (RGB, float, in [0;1]) to detect edges |
|
* \param dst : destination image (grayscale, float, in [0;1]) |
|
* where edges are drawn |
|
*/ |
|
void detectEdges(const cv::Mat &src, cv::Mat &dst) const |
|
{ |
|
CV_Assert( src.type() == CV_32FC3 ); |
|
|
|
dst.create( src.size(), cv::DataType<float>::type ); |
|
|
|
int padding = ( __rf.options.patchSize |
|
- __rf.options.patchInnerSize )/2; |
|
|
|
cv::Mat nSrc; |
|
copyMakeBorder( src, nSrc, padding, padding, |
|
padding, padding, BORDER_REFLECT ); |
|
|
|
NChannelsMat features; |
|
createRFFeatureGetter()->getFeatures( nSrc, features, |
|
__rf.options.gradientNormalizationRadius, |
|
__rf.options.gradientSmoothingRadius, |
|
__rf.options.shrinkNumber, |
|
__rf.options.numberOfOutputChannels, |
|
__rf.options.numberOfGradientOrientations ); |
|
predictEdges( features, dst ); |
|
} |
|
|
|
protected: |
|
/*! |
|
* Private method used by process method. The function |
|
* predict edges in n-channel feature image and store them to dst. |
|
* |
|
* \param features : source image (n-channels, float) to detect edges |
|
* \param dst : destination image (grayscale, float, in [0;1]) where edges are drawn |
|
*/ |
|
void predictEdges(const NChannelsMat &features, cv::Mat &dst) const |
|
{ |
|
int shrink = __rf.options.shrinkNumber; |
|
int rfs = __rf.options.regFeatureSmoothingRadius; |
|
int sfs = __rf.options.ssFeatureSmoothingRadius; |
|
|
|
int nTreesEval = __rf.options.numberOfTreesToEvaluate; |
|
int nTrees = __rf.options.numberOfTrees; |
|
int nTreesNodes = __rf.numberOfTreeNodes; |
|
|
|
const int nchannels = features.channels(); |
|
int pSize = __rf.options.patchSize; |
|
|
|
int nFeatures = CV_SQR(pSize/shrink)*nchannels; |
|
int outNum = __rf.options.numberOfOutputChannels; |
|
|
|
int stride = __rf.options.stride; |
|
int ipSize = __rf.options.patchInnerSize; |
|
int gridSize = __rf.options.selfsimilarityGridSize; |
|
|
|
const int height = cvCeil( double(features.rows*shrink - pSize) / stride ); |
|
const int width = cvCeil( double(features.cols*shrink - pSize) / stride ); |
|
// image size in patches with overlapping |
|
|
|
//------------------------------------------------------------------------- |
|
|
|
NChannelsMat regFeatures = imsmooth(features, cvRound(rfs / float(shrink))); |
|
NChannelsMat ssFeatures = imsmooth(features, cvRound(sfs / float(shrink))); |
|
|
|
NChannelsMat indexes(height, width, CV_MAKETYPE(DataType<int>::type, nTreesEval)); |
|
|
|
std::vector <int> offsetI(/**/ CV_SQR(pSize/shrink)*nchannels, 0); |
|
for (int i = 0; i < CV_SQR(pSize/shrink)*nchannels; ++i) |
|
{ |
|
int z = i / CV_SQR(pSize/shrink); |
|
int y = ( i % CV_SQR(pSize/shrink) )/(pSize/shrink); |
|
int x = ( i % CV_SQR(pSize/shrink) )%(pSize/shrink); |
|
|
|
offsetI[i] = x*features.cols*nchannels + y*nchannels + z; |
|
} |
|
// lookup table for mapping linear index to offsets |
|
|
|
std::vector <int> offsetE(/**/ CV_SQR(ipSize)*outNum, 0); |
|
for (int i = 0; i < CV_SQR(ipSize)*outNum; ++i) |
|
{ |
|
int z = i / CV_SQR(ipSize); |
|
int y = ( i % CV_SQR(ipSize) )/ipSize; |
|
int x = ( i % CV_SQR(ipSize) )%ipSize; |
|
|
|
offsetE[i] = x*dst.cols*outNum + y*outNum + z; |
|
} |
|
// lookup table for mapping linear index to offsets |
|
|
|
std::vector <int> offsetX( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0); |
|
std::vector <int> offsetY( CV_SQR(gridSize)*(CV_SQR(gridSize) - 1)/2 * nchannels, 0); |
|
|
|
int hc = cvRound( (pSize/shrink) / (2.0*gridSize) ); |
|
// half of cell |
|
std::vector <int> gridPositions; |
|
for(int i = 0; i < gridSize; i++) |
|
gridPositions.push_back( (i+1)*(pSize/shrink + 2*hc - 1)/(gridSize + 1.0) - hc + 0.5 ); |
|
|
|
for (int i = 0, n = 0; i < CV_SQR(gridSize)*nchannels; ++i) |
|
for (int j = (i%CV_SQR(gridSize)) + 1; j < CV_SQR(gridSize); ++j, ++n) |
|
{ |
|
int z = i / CV_SQR(gridSize); |
|
|
|
int x1 = gridPositions[i%CV_SQR(gridSize)%gridSize]; |
|
int y1 = gridPositions[i%CV_SQR(gridSize)/gridSize]; |
|
|
|
int x2 = gridPositions[j%gridSize]; |
|
int y2 = gridPositions[j/gridSize]; |
|
|
|
offsetX[n] = x1*features.cols*nchannels + y1*nchannels + z; |
|
offsetY[n] = x2*features.cols*nchannels + y2*nchannels + z; |
|
} |
|
// lookup tables for mapping linear index to offset pairs |
|
|
|
for (int i = 0; i < height; ++i) |
|
{ |
|
float *regFeaturesPtr = regFeatures.ptr<float>(i*stride/shrink); |
|
float *ssFeaturesPtr = ssFeatures.ptr<float>(i*stride/shrink); |
|
|
|
int *indexPtr = indexes.ptr<int>(i); |
|
|
|
for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval)) |
|
// for j,k in [0;width)x[0;nTreesEval) |
|
{ |
|
int baseNode = ( ((i + j)%(2*nTreesEval) + k)%nTrees )*nTreesNodes; |
|
int currentNode = baseNode; |
|
// select root node of the tree to evaluate |
|
|
|
int offset = (j*stride/shrink)*nchannels; |
|
while ( __rf.childs[currentNode] != 0 ) |
|
{ |
|
int currentId = __rf.featureIds[currentNode]; |
|
float currentFeature; |
|
|
|
if (currentId >= nFeatures) |
|
{ |
|
int xIndex = offsetX[currentId - nFeatures]; |
|
float A = ssFeaturesPtr[offset + xIndex]; |
|
|
|
int yIndex = offsetY[currentId - nFeatures]; |
|
float B = ssFeaturesPtr[offset + yIndex]; |
|
|
|
currentFeature = A - B; |
|
} |
|
else |
|
currentFeature = regFeaturesPtr[offset + offsetI[currentId]]; |
|
|
|
// compare feature to threshold and move left or right accordingly |
|
if (currentFeature < __rf.thresholds[currentNode]) |
|
currentNode = baseNode + __rf.childs[currentNode] - 1; |
|
else |
|
currentNode = baseNode + __rf.childs[currentNode]; |
|
} |
|
|
|
indexPtr[j*nTreesEval + k] = currentNode; |
|
} |
|
} |
|
|
|
NChannelsMat dstM(dst.size(), |
|
CV_MAKETYPE(DataType<float>::type, outNum)); |
|
dstM.setTo(0); |
|
|
|
float step = 2.0f * CV_SQR(stride) / CV_SQR(ipSize) / nTreesEval; |
|
for (int i = 0; i < height; ++i) |
|
{ |
|
int *pIndex = indexes.ptr<int>(i); |
|
float *pDst = dstM.ptr<float>(i*stride); |
|
|
|
for (int j = 0, k = 0; j < width; ++k, j += !(k %= nTreesEval)) |
|
{// for j,k in [0;width)x[0;nTreesEval) |
|
|
|
int currentNode = pIndex[j*nTreesEval + k]; |
|
|
|
int start = __rf.edgeBoundaries[currentNode]; |
|
int finish = __rf.edgeBoundaries[currentNode + 1]; |
|
|
|
if (start == finish) |
|
continue; |
|
|
|
int offset = j*stride*outNum; |
|
for (int p = start; p < finish; ++p) |
|
pDst[offset + offsetE[__rf.edgeBins[p]]] += step; |
|
} |
|
} |
|
|
|
cv::reduce( dstM.reshape(1, dstM.total() ), dstM, 2, CV_REDUCE_SUM); |
|
imsmooth( dstM.reshape(1, dst.rows), 1 ).copyTo(dst); |
|
} |
|
|
|
/********************* Members *********************/ |
|
protected: |
|
/*! algorithm name */ |
|
String name; |
|
|
|
/*! optional feature getter (getFeatures method) */ |
|
const RFFeatureGetter *howToGetFeatures; |
|
|
|
/*! random forest used to detect edges */ |
|
struct RandomForest |
|
{ |
|
/*! random forest options, e.g. number of trees */ |
|
struct RandomForestOptions |
|
{ |
|
// model params |
|
|
|
int numberOfOutputChannels; /*!< number of edge orientation bins for output */ |
|
|
|
int patchSize; /*!< width of image patches */ |
|
int patchInnerSize; /*!< width of predicted part inside patch*/ |
|
|
|
// feature params |
|
|
|
int regFeatureSmoothingRadius; /*!< radius for smoothing of regular features |
|
* (using convolution with triangle filter) */ |
|
|
|
int ssFeatureSmoothingRadius; /*!< radius for smoothing of additional features |
|
* (using convolution with triangle filter) */ |
|
|
|
int shrinkNumber; /*!< amount to shrink channels */ |
|
|
|
int numberOfGradientOrientations; /*!< number of orientations per gradient scale */ |
|
|
|
int gradientSmoothingRadius; /*!< radius for smoothing of gradients |
|
* (using convolution with triangle filter) */ |
|
|
|
int gradientNormalizationRadius; /*!< gradient normalization radius */ |
|
int selfsimilarityGridSize; /*!< number of self similarity cells */ |
|
|
|
// detection params |
|
int numberOfTrees; /*!< number of trees in forest to train */ |
|
int numberOfTreesToEvaluate; /*!< number of trees to evaluate per location */ |
|
|
|
int stride; /*!< stride at which to compute edges */ |
|
|
|
} options; |
|
|
|
int numberOfTreeNodes; |
|
|
|
std::vector <int> featureIds; /*!< feature coordinate thresholded at k-th node */ |
|
std::vector <float> thresholds; /*!< threshold applied to featureIds[k] at k-th node */ |
|
std::vector <int> childs; /*!< k --> child[k] - 1, child[k] */ |
|
|
|
std::vector <int> edgeBoundaries; /*!< ... */ |
|
std::vector <int> edgeBins; /*!< ... */ |
|
} __rf; |
|
}; |
|
|
|
Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model, |
|
const RFFeatureGetter *howToGetFeatures) |
|
{ |
|
return makePtr<StructuredEdgeDetectionImpl>(model, howToGetFeatures); |
|
} |
|
|
|
}
|
|
|