You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
3.7 KiB
147 lines
3.7 KiB
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include <cmath> |
|
using std::abs; |
|
using std::exp; |
|
using std::tanh; |
|
using std::pow; |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
template<typename Func> |
|
class ElementWiseLayer : public Layer |
|
{ |
|
Func func; |
|
public: |
|
|
|
ElementWiseLayer(LayerParams &_params) : func(_params) {} |
|
|
|
void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
|
{ |
|
outputs.resize(inputs.size()); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
outputs[i].shareFrom(*inputs[i]); //no data copy |
|
} |
|
|
|
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
|
{ |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
CV_Assert(inputs[i]->ptrRaw() == outputs[i].ptrRaw() && inputs[i]->type() == outputs[i].type()); |
|
|
|
size_t size = outputs[i].total(); |
|
|
|
if (outputs[i].isFloat()) |
|
{ |
|
float *data = outputs[i].ptrf(); |
|
for (size_t j = 0; j < size; j++) |
|
data[j] = func(data[j]); |
|
} |
|
else if (outputs[i].isDouble()) |
|
{ |
|
double *data = outputs[i].ptr<double>(); |
|
for (size_t j = 0; j < size; j++) |
|
data[j] = func(data[j]); |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Only CV_32F and CV_64F blobs are supported"); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct ReLUFunctor |
|
{ |
|
float negative_slope; |
|
|
|
ReLUFunctor(LayerParams ¶ms) |
|
{ |
|
if (params.has("negative_slope")) |
|
negative_slope = params.get<float>("negative_slope"); |
|
else |
|
negative_slope = 0.f; |
|
} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return (x >= (TFloat)0) ? x : negative_slope * x; |
|
} |
|
}; |
|
|
|
struct TanHFunctor |
|
{ |
|
TanHFunctor(LayerParams&) {} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return tanh(x); |
|
} |
|
}; |
|
|
|
struct SigmoidFunctor |
|
{ |
|
SigmoidFunctor(LayerParams&) {} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return (TFloat)1 / ((TFloat)1 + exp(-x)); |
|
} |
|
}; |
|
|
|
struct AbsValFunctor |
|
{ |
|
AbsValFunctor(LayerParams&) {} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return abs(x); |
|
} |
|
}; |
|
|
|
struct PowerFunctor |
|
{ |
|
float power, scale, shift; |
|
|
|
PowerFunctor(LayerParams ¶ms) |
|
{ |
|
power = params.get<float>("power", 1.0f); |
|
scale = params.get<float>("scale", 1.0f); |
|
shift = params.get<float>("shift", 0.0f); |
|
} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return pow((TFloat)shift + (TFloat)scale * x, (TFloat)power); |
|
} |
|
}; |
|
|
|
struct BNLLFunctor |
|
{ |
|
BNLLFunctor(LayerParams&) {} |
|
|
|
template<typename TFloat> |
|
inline TFloat operator()(TFloat x) |
|
{ |
|
return log((TFloat)1 + exp(x)); |
|
} |
|
}; |
|
|
|
REGISTER_LAYER_CLASS(ReLU, ElementWiseLayer<ReLUFunctor>) |
|
REGISTER_LAYER_CLASS(TanH, ElementWiseLayer<TanHFunctor>) |
|
REGISTER_LAYER_CLASS(BNLL, ElementWiseLayer<BNLLFunctor>) |
|
REGISTER_LAYER_CLASS(Power, ElementWiseLayer<PowerFunctor>) |
|
REGISTER_LAYER_CLASS(AbsVal, ElementWiseLayer<AbsValFunctor>) |
|
REGISTER_LAYER_CLASS(Sigmoid, ElementWiseLayer<SigmoidFunctor>) |
|
|
|
} |
|
} |