You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
7.1 KiB
176 lines
7.1 KiB
#include <sstream> |
|
#include <iostream> |
|
|
|
#include "opencv2/quality.hpp" |
|
#include "opencv2/quality/quality_utils.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/ml.hpp" |
|
|
|
/* |
|
BRISQUE Trainer using LIVE DB R2 |
|
http://live.ece.utexas.edu/research/Quality/subjective.htm |
|
H.R. Sheikh, Z.Wang, L. Cormack and A.C. Bovik, "LIVE Image Quality Assessment Database Release 2", http://live.ece.utexas.edu/research/quality . |
|
H.R. Sheikh, M.F. Sabir and A.C. Bovik, "A statistical evaluation of recent full reference image quality assessment algorithms", IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3440-3451, Nov. 2006. |
|
Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing , vol.13, no.4, pp. 600- 612, April 2004. |
|
*/ |
|
|
|
/* |
|
Copyright (c) 2011 The University of Texas at Austin |
|
All rights reserved. |
|
|
|
Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy, |
|
modify, and distribute this code (the source files) and its documentation for |
|
any purpose, provided that the copyright notice in its entirety appear in all copies of this code, and the |
|
original source of this code, Laboratory for Image and Video Engineering (LIVE, http://live.ece.utexas.edu) |
|
and Center for Perceptual Systems (CPS, http://www.cps.utexas.edu) at the University of Texas at Austin (UT Austin, |
|
http://www.utexas.edu), is acknowledged in any publication that reports research using this code. The research |
|
is to be cited in the bibliography as: |
|
|
|
1) A. Mittal, A. K. Moorthy and A. C. Bovik, "BRISQUE Software Release", |
|
URL: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip, 2011 |
|
|
|
2) A. Mittal, A. K. Moorthy and A. C. Bovik, "No Reference Image Quality Assessment in the Spatial Domain" |
|
submitted |
|
|
|
IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT AUSTIN BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, |
|
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS DATABASE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF TEXAS |
|
AT AUSTIN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
THE UNIVERSITY OF TEXAS AT AUSTIN SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE DATABASE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, |
|
AND THE UNIVERSITY OF TEXAS AT AUSTIN HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
|
*/ |
|
|
|
/* Original Paper: @cite Mittal2 and Original Implementation: @cite Mittal2_software */ |
|
|
|
namespace { |
|
|
|
#define CATEGORIES 5 |
|
#define IMAGENUM 982 |
|
#define JP2KNUM 227 |
|
#define JPEGNUM 233 |
|
#define WNNUM 174 |
|
#define GBLURNUM 174 |
|
#define FFNUM 174 |
|
|
|
// collects training data from LIVE R2 database |
|
// returns {features, responses}, 1 row per image |
|
std::pair<cv::Mat, cv::Mat> collect_data_live_r2(const std::string& foldername) |
|
{ |
|
FILE* fid = nullptr; |
|
|
|
//---------------------------------------------------- |
|
// class is the distortion category, there are 982 images in LIVE database |
|
std::vector<std::string> distortionlabels; |
|
distortionlabels.push_back("jp2k"); |
|
distortionlabels.push_back("jpeg"); |
|
distortionlabels.push_back("wn"); |
|
distortionlabels.push_back("gblur"); |
|
distortionlabels.push_back("fastfading"); |
|
|
|
int imnumber[5] = { 0,227,460,634,808 }; |
|
|
|
std::vector<int>categorylabels; |
|
categorylabels.insert(categorylabels.end(), JP2KNUM, 0); |
|
categorylabels.insert(categorylabels.end(), JPEGNUM, 1); |
|
categorylabels.insert(categorylabels.end(), WNNUM, 2); |
|
categorylabels.insert(categorylabels.end(), GBLURNUM, 3); |
|
categorylabels.insert(categorylabels.end(), FFNUM, 4); |
|
|
|
int iforg[IMAGENUM]; |
|
fid = fopen((foldername + "orgs.txt").c_str(), "r"); |
|
for (int itr = 0; itr < IMAGENUM; itr++) |
|
CV_Assert( fscanf(fid, "%d", iforg + itr) > 0); |
|
fclose(fid); |
|
|
|
float dmosscores[IMAGENUM]; |
|
fid = fopen((foldername + "dmos.txt").c_str(), "r"); |
|
for (int itr = 0; itr < IMAGENUM; itr++) |
|
CV_Assert( fscanf(fid, "%f", dmosscores + itr) > 0 ); |
|
fclose(fid); |
|
|
|
// features vector, 1 row per image |
|
cv::Mat features(0, 0, CV_32FC1); |
|
|
|
// response vector, 1 row per image |
|
cv::Mat responses(0, 1, CV_32FC1); |
|
|
|
for (int itr = 0; itr < IMAGENUM; itr++) |
|
{ |
|
//Dont compute features for original images |
|
if (iforg[itr]) |
|
continue; |
|
|
|
// append dmos score |
|
float score = dmosscores[itr]; |
|
responses.push_back(cv::Mat(1, 1, CV_32FC1, (void*)&score)); |
|
|
|
// load image, calc features |
|
std::string imname = ""; |
|
imname.append(foldername); |
|
imname.append("/"); |
|
imname.append(distortionlabels[categorylabels[itr]].c_str()); |
|
imname.append("/img"); |
|
imname += std::to_string((itr - imnumber[categorylabels[itr]] + 1)); |
|
imname.append(".bmp"); |
|
|
|
cv::Mat im_features; |
|
cv::quality::QualityBRISQUE::computeFeatures(cv::imread(imname), im_features); // outputs a row vector |
|
|
|
features.push_back(im_features.row(0)); // append row vector |
|
} |
|
|
|
return std::make_pair(std::move(features), std::move(responses)); |
|
} // collect_data_live_r2 |
|
} |
|
|
|
inline void printHelp() |
|
{ |
|
using namespace std; |
|
cout << " Demo of training BRISQUE quality assessment model using LIVE R2 database." << endl; |
|
cout << " A. Mittal, A. K. Moorthy and A. C. Bovik, 'No Reference Image Quality Assessment in the Spatial Domain'" << std::endl << std::endl; |
|
|
|
cout << " Usage: program <live_r2_db_path> <output_model_path> <output_range_path>" << endl << endl; |
|
} |
|
|
|
int main(int argc, const char * argv[]) |
|
{ |
|
using namespace cv::ml; |
|
|
|
if (argc != 4) |
|
{ |
|
printHelp(); |
|
exit(1); |
|
} |
|
|
|
std::cout << "Training BRISQUE on database at " << argv[1] << "..." << std::endl; |
|
|
|
// collect data from the data set |
|
auto data = collect_data_live_r2( std::string( argv[1] ) + "/" ); |
|
|
|
// extract column ranges for features |
|
const auto range = cv::quality::quality_utils::get_column_range(data.first); |
|
|
|
// scale all features from -1 to 1 |
|
cv::quality::quality_utils::scale<float>(data.first, range, -1.f, 1.f); |
|
|
|
// do training, output train file |
|
// libsvm call from original BRISQUE impl: svm-train -s 3 -g 0.05 -c 1024 -b 1 -q train_scale allmodel |
|
auto svm = SVM::create(); |
|
svm->setType(SVM::Types::EPS_SVR); |
|
svm->setKernel(SVM::KernelTypes::RBF); |
|
svm->setGamma(0.05); |
|
svm->setC(1024.); |
|
svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::Type::EPS, 1000, 0.001)); |
|
svm->setP(.1);// default p (epsilon) from libsvm |
|
|
|
svm->train(data.first, cv::ml::ROW_SAMPLE, data.second); |
|
svm->save( argv[2] ); // save to location specified in argv[2] |
|
|
|
// output scale file to argv[3] |
|
cv::Mat range_mat(range); |
|
cv::FileStorage fs(argv[3], cv::FileStorage::WRITE ); |
|
fs << "range" << range_mat; |
|
|
|
return 0; |
|
}
|
|
|