You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
12 KiB
354 lines
12 KiB
/* |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright (c) 2012, Willow Garage, Inc. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following |
|
* disclaimer in the documentation and/or other materials provided |
|
* with the distribution. |
|
* * Neither the name of Willow Garage, Inc. nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#define SHOW_DEBUG_LOG 0 |
|
#define SHOW_DEBUG_IMAGES 0 |
|
|
|
static |
|
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K, |
|
Mat& warpedImage, Mat& warpedDepth) |
|
{ |
|
CV_Assert(!image.empty()); |
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
CV_Assert(depth.size() == image.size()); |
|
CV_Assert(depth.type() == CV_32FC1); |
|
|
|
CV_Assert(!rvec.empty()); |
|
CV_Assert(rvec.total() == 3); |
|
CV_Assert(rvec.type() == CV_64FC1); |
|
|
|
CV_Assert(!tvec.empty()); |
|
CV_Assert(tvec.size() == Size(1, 3)); |
|
CV_Assert(tvec.type() == CV_64FC1); |
|
|
|
warpedImage.create(image.size(), CV_8UC1); |
|
warpedImage = Scalar(0); |
|
warpedDepth.create(image.size(), CV_32FC1); |
|
warpedDepth = Scalar(FLT_MAX); |
|
|
|
Mat cloud; |
|
depthTo3d(depth, K, cloud); |
|
Mat Rt = Mat::eye(4, 4, CV_64FC1); |
|
{ |
|
Mat R, dst; |
|
Rodrigues(rvec, R); |
|
|
|
dst = Rt(Rect(0,0,3,3)); |
|
R.copyTo(dst); |
|
|
|
dst = Rt(Rect(3,0,1,3)); |
|
tvec.copyTo(dst); |
|
} |
|
Mat warpedCloud, warpedImagePoints; |
|
perspectiveTransform(cloud, warpedCloud, Rt); |
|
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints); |
|
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows); |
|
Rect r(0, 0, image.cols, image.rows); |
|
for(int y = 0; y < cloud.rows; y++) |
|
{ |
|
for(int x = 0; x < cloud.cols; x++) |
|
{ |
|
Point p = warpedImagePoints.at<Point2f>(y,x); |
|
if(r.contains(p)) |
|
{ |
|
float curDepth = warpedDepth.at<float>(p.y, p.x); |
|
float newDepth = warpedCloud.at<Point3f>(y, x).z; |
|
if(newDepth < curDepth && newDepth > 0) |
|
{ |
|
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x); |
|
warpedDepth.at<float>(p.y, p.x) = newDepth; |
|
} |
|
} |
|
} |
|
} |
|
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100); |
|
} |
|
|
|
static |
|
void dilateFrame(Mat& image, Mat& depth) |
|
{ |
|
CV_Assert(!image.empty()); |
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
CV_Assert(!depth.empty()); |
|
CV_Assert(depth.type() == CV_32FC1); |
|
CV_Assert(depth.size() == image.size()); |
|
|
|
Mat mask(image.size(), CV_8UC1, Scalar(255)); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON) |
|
mask.at<uchar>(y,x) = 0; |
|
|
|
image.setTo(255, ~mask); |
|
Mat minImage; |
|
erode(image, minImage, Mat()); |
|
|
|
image.setTo(0, ~mask); |
|
Mat maxImage; |
|
dilate(image, maxImage, Mat()); |
|
|
|
depth.setTo(FLT_MAX, ~mask); |
|
Mat minDepth; |
|
erode(depth, minDepth, Mat()); |
|
|
|
depth.setTo(0, ~mask); |
|
Mat maxDepth; |
|
dilate(depth, maxDepth, Mat()); |
|
|
|
Mat dilatedMask; |
|
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x)) |
|
{ |
|
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) + |
|
static_cast<float>(maxImage.at<uchar>(y,x)))); |
|
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x)); |
|
} |
|
} |
|
|
|
class CV_OdometryTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_OdometryTest(const Ptr<Odometry>& _odometry, |
|
double _maxError1, |
|
double _maxError5, |
|
double _idError = DBL_EPSILON) : |
|
odometry(_odometry), |
|
maxError1(_maxError1), |
|
maxError5(_maxError5), |
|
idError(_idError) |
|
{ } |
|
|
|
protected: |
|
bool readData(Mat& image, Mat& depth) const; |
|
static void generateRandomTransformation(Mat& R, Mat& t); |
|
|
|
virtual void run(int); |
|
|
|
Ptr<Odometry> odometry; |
|
double maxError1; |
|
double maxError5; |
|
double idError; |
|
}; |
|
|
|
bool CV_OdometryTest::readData(Mat& image, Mat& depth) const |
|
{ |
|
std::string imageFilename = ts->get_data_path() + "rgbd/rgb.png"; |
|
std::string depthFilename = ts->get_data_path() + "rgbd/depth.png"; |
|
|
|
image = imread(imageFilename, 0); |
|
depth = imread(depthFilename, -1); |
|
|
|
if(image.empty()) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return false; |
|
} |
|
if(depth.empty()) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Depth %s can not be read.\n", depthFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
ts->set_gtest_status(); |
|
return false; |
|
} |
|
|
|
CV_DbgAssert(image.type() == CV_8UC1); |
|
CV_DbgAssert(depth.type() == CV_16UC1); |
|
{ |
|
Mat depth_flt; |
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f); |
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON); |
|
depth = depth_flt; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void CV_OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec) |
|
{ |
|
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad |
|
const float maxTranslation = 0.02f; //m |
|
|
|
RNG& rng = theRNG(); |
|
rvec.create(3, 1, CV_64FC1); |
|
tvec.create(3, 1, CV_64FC1); |
|
|
|
randu(rvec, Scalar(-1000), Scalar(1000)); |
|
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation)); |
|
|
|
randu(tvec, Scalar(-1000), Scalar(1000)); |
|
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation)); |
|
} |
|
|
|
void CV_OdometryTest::run(int) |
|
{ |
|
float fx = 525.0f, // default |
|
fy = 525.0f, |
|
cx = 319.5f, |
|
cy = 239.5f; |
|
Mat K = Mat::eye(3,3,CV_32FC1); |
|
{ |
|
K.at<float>(0,0) = fx; |
|
K.at<float>(1,1) = fy; |
|
K.at<float>(0,2) = cx; |
|
K.at<float>(1,2) = cy; |
|
} |
|
|
|
Mat image, depth; |
|
if(!readData(image, depth)) |
|
return; |
|
|
|
odometry->setCameraMatrix(K); |
|
|
|
Mat calcRt; |
|
|
|
// 1. Try to find Rt between the same frame (try masks also). |
|
bool isComputed = odometry->compute(image, depth, Mat(image.size(), CV_8UC1, Scalar(255)), |
|
image, depth, Mat(image.size(), CV_8UC1, Scalar(255)), |
|
calcRt); |
|
if(!isComputed) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Can not find Rt between the same frame"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
double diff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1)); |
|
if(diff > idError) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect transformation between the same frame (not the identity matrix), diff = %f", diff); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
|
|
// 2. Generate random rigid body motion in some ranges several times (iterCount). |
|
// On each iteration an input frame is warped using generated transformation. |
|
// Odometry is run on the following pair: the original frame and the warped one. |
|
// Comparing a computed transformation with an applied one we compute 2 errors: |
|
// better_1time_count - count of poses which error is less than ground truth pose, |
|
// better_5times_count - count of poses which error is 5 times less than ground truth pose. |
|
int iterCount = 100; |
|
int better_1time_count = 0; |
|
int better_5times_count = 0; |
|
for(int iter = 0; iter < iterCount; iter++) |
|
{ |
|
Mat rvec, tvec; |
|
generateRandomTransformation(rvec, tvec); |
|
Mat warpedImage, warpedDepth; |
|
warpFrame(image, depth, rvec, tvec, K, warpedImage, warpedDepth); |
|
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping |
|
|
|
Mat imageMask(image.size(), CV_8UC1, Scalar(255)); |
|
isComputed = odometry->compute(image, depth, imageMask, warpedImage, warpedDepth, imageMask, calcRt); |
|
if(!isComputed) |
|
continue; |
|
|
|
Mat calcR = calcRt(Rect(0,0,3,3)), calcRvec; |
|
Rodrigues(calcR, calcRvec); |
|
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows); |
|
Mat calcTvec = calcRt(Rect(3,0,1,3)); |
|
|
|
#if SHOW_DEBUG_IMAGES |
|
imshow("image", image); |
|
imshow("warpedImage", warpedImage); |
|
Mat resultImage, resultDepth; |
|
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth); |
|
imshow("resultImage", resultImage); |
|
waitKey(); |
|
#endif |
|
|
|
|
|
// compare rotation |
|
double rdiffnorm = cv::norm(rvec - calcRvec), |
|
rnorm = cv::norm(rvec); |
|
double tdiffnorm = cv::norm(tvec - calcTvec), |
|
tnorm = cv::norm(tvec); |
|
if(rdiffnorm < rnorm && tdiffnorm < tnorm) |
|
better_1time_count++; |
|
if(5. * rdiffnorm < rnorm && 5 * tdiffnorm < tnorm) |
|
better_5times_count++; |
|
|
|
#if SHOW_DEBUG_LOG |
|
std::cout << "Iter " << iter << std::endl; |
|
std::cout << "rdiffnorm " << rdiffnorm << "; rnorm " << rnorm << std::endl; |
|
std::cout << "tdiffnorm " << tdiffnorm << "; tnorm " << tnorm << std::endl; |
|
|
|
std::cout << "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count << std::endl; |
|
#endif |
|
} |
|
|
|
|
|
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount)) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [1st case]: %f / %f", static_cast<double>(better_1time_count), maxError1 * static_cast<double>(iterCount)); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
|
|
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount)) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [2nd case]: %f / %f", static_cast<double>(better_5times_count), maxError5 * static_cast<double>(iterCount)); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST(RGBD_Odometry_Rgbd, algorithmic) |
|
{ |
|
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdOdometry"), 0.99, 0.89); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, algorithmic) |
|
{ |
|
CV_OdometryTest test(cv::rgbd::Odometry::create("ICPOdometry"), 0.99, 0.99); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, algorithmic) |
|
{ |
|
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdICPOdometry"), 0.99, 0.99); |
|
test.safe_run(); |
|
} |
|
|
|
|
|
}} // namespace
|
|
|