Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

555 lines
14 KiB

//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Author: Tolga Birdal <tbirdal AT gmail.com>
#include "precomp.hpp"
namespace cv
{
namespace ppf_match_3d
{
static void subtractColumns(Mat srcPC, double mean[3])
{
int height = srcPC.rows;
for (int i=0; i<height; i++)
{
float *row = (float*)(&srcPC.data[i*srcPC.step]);
{
row[0]-=(float)mean[0];
row[1]-=(float)mean[1];
row[2]-=(float)mean[2];
}
}
}
// as in PCA
static void computeMeanCols(Mat srcPC, double mean[3])
{
int height = srcPC.rows;
double mean1=0, mean2 = 0, mean3 = 0;
for (int i=0; i<height; i++)
{
const float *row = (float*)(&srcPC.data[i*srcPC.step]);
{
mean1 += (double)row[0];
mean2 += (double)row[1];
mean3 += (double)row[2];
}
}
mean1/=(double)height;
mean2/=(double)height;
mean3/=(double)height;
mean[0] = mean1;
mean[1] = mean2;
mean[2] = mean3;
}
// as in PCA
/*static void subtractMeanFromColumns(Mat srcPC, double mean[3])
{
computeMeanCols(srcPC, mean);
subtractColumns(srcPC, mean);
}*/
// compute the average distance to the origin
static double computeDistToOrigin(Mat srcPC)
{
int height = srcPC.rows;
double dist = 0;
for (int i=0; i<height; i++)
{
const float *row = (float*)(&srcPC.data[i*srcPC.step]);
dist += sqrt(row[0]*row[0]+row[1]*row[1]+row[2]*row[2]);
}
return dist;
}
// From numerical receipes: Finds the median of an array
static float medianF(float arr[], int n)
{
int low, high ;
int median;
int middle, ll, hh;
low = 0 ;
high = n-1 ;
median = (low + high) >>1;
for (;;)
{
if (high <= low) /* One element only */
return arr[median] ;
if (high == low + 1)
{
/* Two elements only */
if (arr[low] > arr[high])
std::swap(arr[low], arr[high]) ;
return arr[median] ;
}
/* Find median of low, middle and high items; swap into position low */
middle = (low + high) >>1;
if (arr[middle] > arr[high])
std::swap(arr[middle], arr[high]) ;
if (arr[low] > arr[high])
std::swap(arr[low], arr[high]) ;
if (arr[middle] > arr[low])
std::swap(arr[middle], arr[low]) ;
/* Swap low item (now in position middle) into position (low+1) */
std::swap(arr[middle], arr[low+1]) ;
/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;)
{
do
ll++;
while (arr[low] > arr[ll]) ;
do
hh--;
while (arr[hh] > arr[low]) ;
if (hh < ll)
break;
std::swap(arr[ll], arr[hh]) ;
}
/* Swap middle item (in position low) back into correct position */
std::swap(arr[low], arr[hh]) ;
/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}
static float getRejectionThreshold(float* r, int m, float outlierScale)
{
float* t=(float*)calloc(m, sizeof(float));
int i=0;
float s=0, medR, threshold;
memcpy(t, r, m*sizeof(float));
medR=medianF(t, m);
for (i=0; i<m; i++)
t[i] = (float)fabs((double)r[i]-(double)medR);
s = 1.48257968f * medianF(t, m);
threshold = (outlierScale*s+medR);
free(t);
return threshold;
}
// Kok Lim Low's linearization
static void minimizePointToPlaneMetric(Mat Src, Mat Dst, Mat& X)
{
//Mat sub = Dst - Src;
Mat A = Mat(Src.rows, 6, CV_64F);
Mat b = Mat(Src.rows, 1, CV_64F);
#if defined _OPENMP
#pragma omp parallel for
#endif
for (int i=0; i<Src.rows; i++)
{
const double *srcPt = (double*)&Src.data[i*Src.step];
const double *dstPt = (double*)&Dst.data[i*Dst.step];
const double *normals = &dstPt[3];
double *bVal = (double*)&b.data[i*b.step];
double *aRow = (double*)&A.data[i*A.step];
const double sub[3]={dstPt[0]-srcPt[0], dstPt[1]-srcPt[1], dstPt[2]-srcPt[2]};
*bVal = TDot3(sub, normals);
TCross(srcPt, normals, aRow);
aRow[3] = normals[0];
aRow[4] = normals[1];
aRow[5] = normals[2];
}
cv::solve(A, b, X, DECOMP_SVD);
}
static void getTransformMat(Mat X, double Pose[16])
{
Mat DCM;
double *r1, *r2, *r3;
double* x = (double*)X.data;
const double sx = sin(x[0]);
const double cx = cos(x[0]);
const double sy = sin(x[1]);
const double cy = cos(x[1]);
const double sz = sin(x[2]);
const double cz = cos(x[2]);
Mat R1 = Mat::eye(3,3, CV_64F);
Mat R2 = Mat::eye(3,3, CV_64F);
Mat R3 = Mat::eye(3,3, CV_64F);
r1= (double*)R1.data;
r2= (double*)R2.data;
r3= (double*)R3.data;
r1[4]= cx;
r1[5]= -sx;
r1[7]= sx;
r1[8]= cx;
r2[0]= cy;
r2[2]= sy;
r2[6]= -sy;
r2[8]= cy;
r3[0]= cz;
r3[1]= -sz;
r3[3]= sz;
r3[4]= cz;
DCM = R1*(R2*R3);
Pose[0] = DCM.at<double>(0,0);
Pose[1] = DCM.at<double>(0,1);
Pose[2] = DCM.at<double>(0,2);
Pose[4] = DCM.at<double>(1,0);
Pose[5] = DCM.at<double>(1,1);
Pose[6] = DCM.at<double>(1,2);
Pose[8] = DCM.at<double>(2,0);
Pose[9] = DCM.at<double>(2,1);
Pose[10] = DCM.at<double>(2,2);
Pose[3]=x[3];
Pose[7]=x[4];
Pose[11]=x[5];
Pose[15]=1;
}
/* Fast way to look up the duplicates
duplicates is pre-allocated
make sure that the max element in array will not exceed maxElement
*/
static hashtable_int* getHashtable(int* data, size_t length, int numMaxElement)
{
hashtable_int* hashtable = hashtableCreate(static_cast<size_t>(numMaxElement*2), 0);
for (size_t i = 0; i < length; i++)
{
const KeyType key = (KeyType)data[i];
hashtableInsertHashed(hashtable, key+1, reinterpret_cast<void*>(i+1));
}
return hashtable;
}
// source point clouds are assumed to contain their normals
int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, double& residual, double pose[16])
{
int n = srcPC.rows;
const bool useRobustReject = m_rejectionScale>0;
Mat srcTemp = srcPC.clone();
Mat dstTemp = dstPC.clone();
double meanSrc[3], meanDst[3];
computeMeanCols(srcTemp, meanSrc);
computeMeanCols(dstTemp, meanDst);
double meanAvg[3]={0.5*(meanSrc[0]+meanDst[0]), 0.5*(meanSrc[1]+meanDst[1]), 0.5*(meanSrc[2]+meanDst[2])};
subtractColumns(srcTemp, meanAvg);
subtractColumns(dstTemp, meanAvg);
double distSrc = computeDistToOrigin(srcTemp);
double distDst = computeDistToOrigin(dstTemp);
double scale = (double)n / ((distSrc + distDst)*0.5);
srcTemp(cv::Range(0, srcTemp.rows), cv::Range(0,3)) *= scale;
dstTemp(cv::Range(0, dstTemp.rows), cv::Range(0,3)) *= scale;
Mat srcPC0 = srcTemp;
Mat dstPC0 = dstTemp;
// initialize pose
matrixIdentity(4, pose);
void* flann = indexPCFlann(dstPC0);
Mat M = Mat::eye(4,4,CV_64F);
double tempResidual = 0;
// walk the pyramid
for (int level = m_numLevels-1; level >=0; level--)
{
const double impact = 2;
double div = pow((double)impact, (double)level);
//double div2 = div*div;
const int numSamples = cvRound((double)(n/(div)));
const double TolP = m_tolerance*(double)(level+1)*(level+1);
const int MaxIterationsPyr = cvRound((double)m_maxIterations/(level+1));
// Obtain the sampled point clouds for this level: Also rotates the normals
Mat srcPCT = transformPCPose(srcPC0, pose);
const int sampleStep = cvRound((double)n/(double)numSamples);
std::vector<int> srcSampleInd;
/*
Note by Tolga Birdal
Downsample the model point clouds. If more optimization is required,
one could also downsample the scene points, but I think this might
decrease the accuracy. That's why I won't be implementing it at this
moment.
Also note that you have to compute a KD-tree for each level.
*/
srcPCT = samplePCUniformInd(srcPCT, sampleStep, srcSampleInd);
double fval_old=9999999999;
double fval_perc=0;
double fval_min=9999999999;
Mat Src_Moved = srcPCT.clone();
int i=0;
size_t numElSrc = (size_t)Src_Moved.rows;
int sizesResult[2] = {(int)numElSrc, 1};
float* distances = new float[numElSrc];
int* indices = new int[numElSrc];
Mat Indices(2, sizesResult, CV_32S, indices, 0);
Mat Distances(2, sizesResult, CV_32F, distances, 0);
// use robust weighting for outlier treatment
int* indicesModel = new int[numElSrc];
int* indicesScene = new int[numElSrc];
int* newI = new int[numElSrc];
int* newJ = new int[numElSrc];
double PoseX[16]={0};
matrixIdentity(4, PoseX);
while ( (!(fval_perc<(1+TolP) && fval_perc>(1-TolP))) && i<MaxIterationsPyr)
{
size_t di=0, selInd = 0;
queryPCFlann(flann, Src_Moved, Indices, Distances);
for (di=0; di<numElSrc; di++)
{
newI[di] = (int)di;
newJ[di] = indices[di];
}
if (useRobustReject)
{
int numInliers = 0;
float threshold = getRejectionThreshold(distances, Distances.rows, m_rejectionScale);
Mat acceptInd = Distances<threshold;
uchar *accPtr = (uchar*)acceptInd.data;
for (int l=0; l<acceptInd.rows; l++)
{
if (accPtr[l])
{
newI[numInliers] = l;
newJ[numInliers] = indices[l];
numInliers++;
}
}
numElSrc=numInliers;
}
// Step 2: Picky ICP
// Among the resulting corresponding pairs, if more than one scene point p_i
// is assigned to the same model point m_j, then select p_i that corresponds
// to the minimum distance
hashtable_int* duplicateTable = getHashtable(newJ, numElSrc, dstPC0.rows);
for (di=0; di<duplicateTable->size; di++)
{
hashnode_i *node = duplicateTable->nodes[di];
if (node)
{
// select the first node
size_t idx = reinterpret_cast<size_t>(node->data)-1, dn=0;
int dup = (int)node->key-1;
size_t minIdxD = idx;
float minDist = distances[idx];
while ( node )
{
idx = reinterpret_cast<size_t>(node->data)-1;
if (distances[idx] < minDist)
{
minDist = distances[idx];
minIdxD = idx;
}
node = node->next;
dn++;
}
indicesModel[ selInd ] = newI[ minIdxD ];
indicesScene[ selInd ] = dup ;
selInd++;
}
}
hashtableDestroy(duplicateTable);
if (selInd)
{
Mat Src_Match = Mat((int)selInd, srcPCT.cols, CV_64F);
Mat Dst_Match = Mat((int)selInd, srcPCT.cols, CV_64F);
for (di=0; di<selInd; di++)
{
const int indModel = indicesModel[di];
const int indScene = indicesScene[di];
const float *srcPt = (float*)&srcPCT.data[indModel*srcPCT.step];
const float *dstPt = (float*)&dstPC0.data[indScene*dstPC0.step];
double *srcMatchPt = (double*)&Src_Match.data[di*Src_Match.step];
double *dstMatchPt = (double*)&Dst_Match.data[di*Dst_Match.step];
int ci=0;
for (ci=0; ci<srcPCT.cols; ci++)
{
srcMatchPt[ci] = (double)srcPt[ci];
dstMatchPt[ci] = (double)dstPt[ci];
}
}
Mat X;
minimizePointToPlaneMetric(Src_Match, Dst_Match, X);
getTransformMat(X, PoseX);
Src_Moved = transformPCPose(srcPCT, PoseX);
double fval = cv::norm(Src_Match, Dst_Match)/(double)(Src_Moved.rows);
// Calculate change in error between iterations
fval_perc=fval/fval_old;
// Store error value
fval_old=fval;
if (fval < fval_min)
fval_min = fval;
}
else
break;
i++;
}
double TempPose[16];
matrixProduct44(PoseX, pose, TempPose);
// no need to copy the last 4 rows
for (int c=0; c<12; c++)
pose[c] = TempPose[c];
residual = tempResidual;
delete[] newI;
delete[] newJ;
delete[] indicesModel;
delete[] indicesScene;
delete[] distances;
delete[] indices;
tempResidual = fval_min;
}
// Pose(1:3, 4) = Pose(1:3, 4)./scale;
pose[3] = pose[3]/scale + meanAvg[0];
pose[7] = pose[7]/scale + meanAvg[1];
pose[11] = pose[11]/scale + meanAvg[2];
// In MATLAB this would be : Pose(1:3, 4) = Pose(1:3, 4)./scale + meanAvg' - Pose(1:3, 1:3)*meanAvg';
double Rpose[9], Cpose[3];
poseToR(pose, Rpose);
matrixProduct331(Rpose, meanAvg, Cpose);
pose[3] -= Cpose[0];
pose[7] -= Cpose[1];
pose[11] -= Cpose[2];
residual = tempResidual;
destroyFlann(flann);
return 0;
}
// source point clouds are assumed to contain their normals
int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, std::vector<Pose3DPtr>& poses)
{
for (size_t i=0; i<poses.size(); i++)
{
double poseICP[16]={0};
Mat srcTemp = transformPCPose(srcPC, poses[i]->pose);
registerModelToScene(srcTemp, dstPC, poses[i]->residual, poseICP);
poses[i]->appendPose(poseICP);
}
return 0;
}
} // namespace ppf_match_3d
} // namespace cv