You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
447 lines
15 KiB
447 lines
15 KiB
/* |
|
By downloading, copying, installing or using the software you agree to this license. |
|
If you do not agree to this license, do not download, install, |
|
copy or use the software. |
|
|
|
|
|
License Agreement |
|
For Open Source Computer Vision Library |
|
(3-clause BSD License) |
|
|
|
Copyright (C) 2000-2015, Intel Corporation, all rights reserved. |
|
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. |
|
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
|
Copyright (C) 2015, OpenCV Foundation, all rights reserved. |
|
Copyright (C) 2015, Itseez Inc., all rights reserved. |
|
Third party copyrights are property of their respective owners. |
|
|
|
Redistribution and use in source and binary forms, with or without modification, |
|
are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
|
|
* Neither the names of the copyright holders nor the names of the contributors |
|
may be used to endorse or promote products derived from this software |
|
without specific prior written permission. |
|
|
|
This software is provided by the copyright holders and contributors "as is" and |
|
any express or implied warranties, including, but not limited to, the implied |
|
warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
In no event shall copyright holders or contributors be liable for any direct, |
|
indirect, incidental, special, exemplary, or consequential damages |
|
(including, but not limited to, procurement of substitute goods or services; |
|
loss of use, data, or profits; or business interruption) however caused |
|
and on any theory of liability, whether in contract, strict liability, |
|
or tort (including negligence or otherwise) arising in any way out of |
|
the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { |
|
namespace xobjdetect { |
|
|
|
static void compute_cdf(const Mat1b& data, |
|
const Mat1f& weights, |
|
Mat1f& cdf) |
|
{ |
|
for (int i = 0; i < cdf.cols; ++i) |
|
cdf(0, i) = 0; |
|
|
|
for (int i = 0; i < weights.cols; ++i) { |
|
cdf(0, data(0, i)) += weights(0, i); |
|
} |
|
|
|
for (int i = 1; i < cdf.cols; ++i) { |
|
cdf(0, i) += cdf(0, i - 1); |
|
} |
|
} |
|
|
|
static void compute_min_step(const Mat &data_pos, const Mat &data_neg, size_t n_bins, |
|
Mat &data_min, Mat &data_step) |
|
{ |
|
// Check that quantized data will fit in unsigned char |
|
assert(n_bins <= 256); |
|
|
|
assert(data_pos.rows == data_neg.rows); |
|
|
|
Mat reduced_pos, reduced_neg; |
|
|
|
reduce(data_pos, reduced_pos, 1, CV_REDUCE_MIN); |
|
reduce(data_neg, reduced_neg, 1, CV_REDUCE_MIN); |
|
min(reduced_pos, reduced_neg, data_min); |
|
data_min -= 0.01; |
|
|
|
Mat data_max; |
|
reduce(data_pos, reduced_pos, 1, CV_REDUCE_MAX); |
|
reduce(data_neg, reduced_neg, 1, CV_REDUCE_MAX); |
|
max(reduced_pos, reduced_neg, data_max); |
|
data_max += 0.01; |
|
|
|
data_step = (data_max - data_min) / (double)(n_bins - 1); |
|
} |
|
|
|
static void quantize_data(Mat &data, Mat1f &data_min, Mat1f &data_step) |
|
{ |
|
//#pragma omp parallel for |
|
for (int col = 0; col < data.cols; ++col) { |
|
data.col(col) -= data_min; |
|
data.col(col) /= data_step; |
|
} |
|
data.convertTo(data, CV_8U); |
|
} |
|
|
|
WaldBoost::WaldBoost(int weak_count): |
|
weak_count_(weak_count), |
|
thresholds_(), |
|
alphas_(), |
|
feature_indices_(), |
|
polarities_(), |
|
cascade_thresholds_() {} |
|
|
|
WaldBoost::WaldBoost(): |
|
weak_count_(), |
|
thresholds_(), |
|
alphas_(), |
|
feature_indices_(), |
|
polarities_(), |
|
cascade_thresholds_() {} |
|
|
|
std::vector<int> WaldBoost::get_feature_indices() |
|
{ |
|
return feature_indices_; |
|
} |
|
|
|
void WaldBoost::detect(Ptr<CvFeatureEvaluator> eval, |
|
const Mat& img, const std::vector<float>& scales, |
|
std::vector<Rect>& bboxes, Mat1f& confidences) |
|
{ |
|
bboxes.clear(); |
|
confidences.release(); |
|
|
|
Mat resized_img; |
|
int step = 4; |
|
float h; |
|
for (size_t i = 0; i < scales.size(); ++i) { |
|
float scale = scales[i]; |
|
resize(img, resized_img, Size(), scale, scale, INTER_LINEAR_EXACT); |
|
eval->setImage(resized_img, 0, 0, feature_indices_); |
|
int n_rows = (int)(24 / scale); |
|
int n_cols = (int)(24 / scale); |
|
for (int r = 0; r + 24 < resized_img.rows; r += step) { |
|
for (int c = 0; c + 24 < resized_img.cols; c += step) { |
|
//eval->setImage(resized_img(Rect(c, r, 24, 24)), 0, 0); |
|
eval->setWindow(Point(c, r)); |
|
if (predict(eval, &h) == +1) { |
|
int row = (int)(r / scale); |
|
int col = (int)(c / scale); |
|
bboxes.push_back(Rect(col, row, n_cols, n_rows)); |
|
confidences.push_back(h); |
|
} |
|
} |
|
} |
|
} |
|
groupRectangles(bboxes, 3, 0.7); |
|
} |
|
|
|
void WaldBoost::detect(Ptr<CvFeatureEvaluator> eval, |
|
const Mat& img, const std::vector<float>& scales, |
|
std::vector<Rect>& bboxes, std::vector<double>& confidences) |
|
{ |
|
bboxes.clear(); |
|
confidences.clear(); |
|
|
|
Mat resized_img; |
|
int step = 4; |
|
float h; |
|
for (size_t i = 0; i < scales.size(); ++i) { |
|
float scale = scales[i]; |
|
resize(img, resized_img, Size(), scale, scale, INTER_LINEAR_EXACT); |
|
eval->setImage(resized_img, 0, 0, feature_indices_); |
|
int n_rows = (int)(24 / scale); |
|
int n_cols = (int)(24 / scale); |
|
for (int r = 0; r + 24 < resized_img.rows; r += step) { |
|
for (int c = 0; c + 24 < resized_img.cols; c += step) { |
|
eval->setWindow(Point(c, r)); |
|
if (predict(eval, &h) == +1) { |
|
int row = (int)(r / scale); |
|
int col = (int)(c / scale); |
|
bboxes.push_back(Rect(col, row, n_cols, n_rows)); |
|
confidences.push_back(h); |
|
} |
|
} |
|
} |
|
} |
|
std::vector<int> levels(bboxes.size(), 0); |
|
groupRectangles(bboxes, levels, confidences, 3, 0.7); |
|
} |
|
|
|
void WaldBoost::fit(Mat& data_pos, Mat& data_neg) |
|
{ |
|
// data_pos: F x N_pos |
|
// data_neg: F x N_neg |
|
// every feature corresponds to row |
|
// every sample corresponds to column |
|
assert(data_pos.rows >= weak_count_); |
|
assert(data_pos.rows == data_neg.rows); |
|
|
|
std::vector<bool> feature_ignore; |
|
for (int i = 0; i < data_pos.rows; ++i) { |
|
feature_ignore.push_back(false); |
|
} |
|
|
|
Mat1f pos_weights(1, data_pos.cols, 1.0f / (2 * data_pos.cols)); |
|
Mat1f neg_weights(1, data_neg.cols, 1.0f / (2 * data_neg.cols)); |
|
Mat1f pos_trace(1, data_pos.cols, 0.0f); |
|
Mat1f neg_trace(1, data_neg.cols, 0.0f); |
|
|
|
bool quantize = false; |
|
if (data_pos.type() != CV_8U) { |
|
std::cerr << "quantize" << std::endl; |
|
quantize = true; |
|
} |
|
|
|
Mat1f data_min, data_step; |
|
int n_bins = 256; |
|
if (quantize) { |
|
compute_min_step(data_pos, data_neg, n_bins, data_min, data_step); |
|
quantize_data(data_pos, data_min, data_step); |
|
quantize_data(data_neg, data_min, data_step); |
|
} |
|
|
|
std::cerr << "pos=" << data_pos.cols << " neg=" << data_neg.cols << std::endl; |
|
for (int i = 0; i < weak_count_; ++i) { |
|
// Train weak learner with lowest error using weights |
|
double min_err = DBL_MAX; |
|
int min_feature_ind = -1; |
|
int min_polarity = 0; |
|
int threshold_q = 0; |
|
float min_threshold = 0; |
|
//#pragma omp parallel for |
|
for (int feat_i = 0; feat_i < data_pos.rows; ++feat_i) { |
|
if (feature_ignore[feat_i]) |
|
continue; |
|
|
|
// Construct cdf |
|
Mat1f pos_cdf(1, n_bins), neg_cdf(1, n_bins); |
|
compute_cdf(data_pos.row(feat_i), pos_weights, pos_cdf); |
|
compute_cdf(data_neg.row(feat_i), neg_weights, neg_cdf); |
|
|
|
float neg_total = (float)sum(neg_weights)[0]; |
|
Mat1f err_direct = pos_cdf + neg_total - neg_cdf; |
|
Mat1f err_backward = 1.0f - err_direct; |
|
|
|
int idx1[2], idx2[2]; |
|
double err1, err2; |
|
minMaxIdx(err_direct, &err1, NULL, idx1); |
|
minMaxIdx(err_backward, &err2, NULL, idx2); |
|
//#pragma omp critical |
|
{ |
|
if (min(err1, err2) < min_err) { |
|
if (err1 < err2) { |
|
min_err = err1; |
|
min_polarity = +1; |
|
threshold_q = idx1[1]; |
|
} else { |
|
min_err = err2; |
|
min_polarity = -1; |
|
threshold_q = idx2[1]; |
|
} |
|
min_feature_ind = feat_i; |
|
if (quantize) { |
|
min_threshold = data_min(feat_i, 0) + data_step(feat_i, 0) * |
|
(threshold_q + .5f); |
|
} else { |
|
min_threshold = threshold_q + .5f; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
float alpha = .5f * (float)log((1 - min_err) / min_err); |
|
alphas_.push_back(alpha); |
|
feature_indices_.push_back(min_feature_ind); |
|
thresholds_.push_back(min_threshold); |
|
polarities_.push_back(min_polarity); |
|
feature_ignore[min_feature_ind] = true; |
|
|
|
double loss = 0; |
|
// Update positive weights |
|
for (int j = 0; j < data_pos.cols; ++j) { |
|
int val = data_pos.at<unsigned char>(min_feature_ind, j); |
|
int label = min_polarity * (val - threshold_q) >= 0 ? +1 : -1; |
|
pos_weights(0, j) *= exp(-alpha * label); |
|
pos_trace(0, j) += alpha * label; |
|
loss += exp(-pos_trace(0, j)) / (2.0f * data_pos.cols); |
|
} |
|
|
|
// Update negative weights |
|
for (int j = 0; j < data_neg.cols; ++j) { |
|
int val = data_neg.at<unsigned char>(min_feature_ind, j); |
|
int label = min_polarity * (val - threshold_q) >= 0 ? +1 : -1; |
|
neg_weights(0, j) *= exp(alpha * label); |
|
neg_trace(0, j) += alpha * label; |
|
loss += exp(+neg_trace(0, j)) / (2.0f * data_neg.cols); |
|
} |
|
double cascade_threshold = -1; |
|
minMaxIdx(pos_trace, &cascade_threshold); |
|
cascade_thresholds_.push_back((float)cascade_threshold); |
|
|
|
std::cerr << "i=" << std::setw(4) << i; |
|
std::cerr << " feat=" << std::setw(5) << min_feature_ind; |
|
std::cerr << " thr=" << std::setw(3) << threshold_q; |
|
std::cerr << " casthr=" << std::fixed << std::setprecision(3) |
|
<< cascade_threshold; |
|
std::cerr << " alpha=" << std::fixed << std::setprecision(3) |
|
<< alpha << " err=" << std::fixed << std::setprecision(3) << min_err |
|
<< " loss=" << std::scientific << loss << std::endl; |
|
|
|
//int pos = 0; |
|
//for (int j = 0; j < data_pos.cols; ++j) { |
|
// if (pos_trace(0, j) > cascade_threshold - 0.5) { |
|
// pos_trace(0, pos) = pos_trace(0, j); |
|
// data_pos.col(j).copyTo(data_pos.col(pos)); |
|
// pos_weights(0, pos) = pos_weights(0, j); |
|
// pos += 1; |
|
// } |
|
//} |
|
//std::cerr << "pos " << data_pos.cols << "/" << pos << std::endl; |
|
//pos_trace = pos_trace.colRange(0, pos); |
|
//data_pos = data_pos.colRange(0, pos); |
|
//pos_weights = pos_weights.colRange(0, pos); |
|
|
|
int pos = 0; |
|
for (int j = 0; j < data_neg.cols; ++j) { |
|
if (neg_trace(0, j) > cascade_threshold - 0.5) { |
|
neg_trace(0, pos) = neg_trace(0, j); |
|
data_neg.col(j).copyTo(data_neg.col(pos)); |
|
neg_weights(0, pos) = neg_weights(0, j); |
|
pos += 1; |
|
} |
|
} |
|
std::cerr << "neg " << data_neg.cols << "/" << pos << std::endl; |
|
neg_trace = neg_trace.colRange(0, pos); |
|
data_neg = data_neg.colRange(0, pos); |
|
neg_weights = neg_weights.colRange(0, pos); |
|
|
|
|
|
if (loss < 1e-50 || min_err > 0.5) { |
|
std::cerr << "Stopping early" << std::endl; |
|
weak_count_ = i + 1; |
|
break; |
|
} |
|
|
|
// Normalize weights |
|
double z = (sum(pos_weights) + sum(neg_weights))[0]; |
|
pos_weights /= z; |
|
neg_weights /= z; |
|
} |
|
} |
|
|
|
int WaldBoost::predict(Ptr<CvFeatureEvaluator> eval, float *h) const |
|
{ |
|
assert(feature_indices_.size() == size_t(weak_count_)); |
|
assert(cascade_thresholds_.size() == size_t(weak_count_)); |
|
float res = 0; |
|
int count = weak_count_; |
|
for (int i = 0; i < count; ++i) { |
|
float val = (*eval)(feature_indices_[i]); |
|
int label = polarities_[i] * (val - thresholds_[i]) > 0 ? +1: -1; |
|
res += alphas_[i] * label; |
|
if (res < cascade_thresholds_[i]) { |
|
return -1; |
|
} |
|
} |
|
*h = res; |
|
return res > cascade_thresholds_[count - 1] ? +1 : -1; |
|
} |
|
|
|
void WaldBoost::write(FileStorage &fs) const |
|
{ |
|
fs << "{"; |
|
fs << "waldboost_params" |
|
<< "{" << "weak_count" << weak_count_ << "}"; |
|
|
|
fs << "thresholds" << "["; |
|
for (size_t i = 0; i < thresholds_.size(); ++i) |
|
fs << thresholds_[i]; |
|
fs << "]"; |
|
|
|
fs << "alphas" << "["; |
|
for (size_t i = 0; i < alphas_.size(); ++i) |
|
fs << alphas_[i]; |
|
fs << "]"; |
|
|
|
fs << "polarities" << "["; |
|
for (size_t i = 0; i < polarities_.size(); ++i) |
|
fs << polarities_[i]; |
|
fs << "]"; |
|
|
|
fs << "cascade_thresholds" << "["; |
|
for (size_t i = 0; i < cascade_thresholds_.size(); ++i) |
|
fs << cascade_thresholds_[i]; |
|
fs << "]"; |
|
|
|
fs << "feature_indices" << "["; |
|
for (size_t i = 0; i < feature_indices_.size(); ++i) |
|
fs << feature_indices_[i]; |
|
fs << "]"; |
|
|
|
fs << "}"; |
|
} |
|
|
|
void WaldBoost::read(const FileNode &node) |
|
{ |
|
weak_count_ = (int)(node["waldboost_params"]["weak_count"]); |
|
thresholds_.resize(weak_count_); |
|
alphas_.resize(weak_count_); |
|
polarities_.resize(weak_count_); |
|
cascade_thresholds_.resize(weak_count_); |
|
feature_indices_.resize(weak_count_); |
|
|
|
FileNodeIterator n; |
|
|
|
n = node["thresholds"].begin(); |
|
for (int i = 0; i < weak_count_; ++i, ++n) |
|
*n >> thresholds_[i]; |
|
|
|
n = node["alphas"].begin(); |
|
for (int i = 0; i < weak_count_; ++i, ++n) |
|
*n >> alphas_[i]; |
|
|
|
n = node["polarities"].begin(); |
|
for (int i = 0; i < weak_count_; ++i, ++n) |
|
*n >> polarities_[i]; |
|
|
|
n = node["cascade_thresholds"].begin(); |
|
for (int i = 0; i < weak_count_; ++i, ++n) |
|
*n >> cascade_thresholds_[i]; |
|
|
|
n = node["feature_indices"].begin(); |
|
for (int i = 0; i < weak_count_; ++i, ++n) |
|
*n >> feature_indices_[i]; |
|
} |
|
|
|
void WaldBoost::reset(int weak_count) |
|
{ |
|
weak_count_ = weak_count; |
|
thresholds_.clear(); |
|
alphas_.clear(); |
|
feature_indices_.clear(); |
|
polarities_.clear(); |
|
cascade_thresholds_.clear(); |
|
} |
|
|
|
WaldBoost::~WaldBoost() |
|
{ |
|
} |
|
|
|
} |
|
}
|
|
|