You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
670 lines
17 KiB
670 lines
17 KiB
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// Author: Tolga Birdal <tbirdal AT gmail.com> |
|
|
|
#ifndef __OPENCV_SURFACE_MATCHING_UTILS_HPP_ |
|
#define __OPENCV_SURFACE_MATCHING_UTILS_HPP_ |
|
|
|
#include <cmath> |
|
#include <cstdio> |
|
|
|
namespace cv |
|
{ |
|
namespace ppf_match_3d |
|
{ |
|
|
|
const float EPS = 1.192092896e-07F; /* smallest such that 1.0+FLT_EPSILON != 1.0 */ |
|
|
|
#ifndef M_PI |
|
#define M_PI 3.1415926535897932384626433832795 |
|
#endif |
|
|
|
static inline double TNorm3(const double v[]) |
|
{ |
|
return (sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])); |
|
} |
|
|
|
static inline void TNormalize3(double v[]) |
|
{ |
|
double normTemp=TNorm3(v); |
|
if (normTemp>0) |
|
{ |
|
v[0]/=normTemp; |
|
v[1]/=normTemp; |
|
v[2]/=normTemp; |
|
} |
|
} |
|
|
|
static inline double TDot3(const double a[3], const double b[3]) |
|
{ |
|
return ((a[0])*(b[0])+(a[1])*(b[1])+(a[2])*(b[2])); |
|
} |
|
|
|
static inline void TCross(const double a[], const double b[], double c[]) |
|
{ |
|
c[0] = (a[1])*(b[2])-(a[2])*(b[1]); |
|
c[1] = (a[2])*(b[0])-(a[0])*(b[2]); |
|
c[2] = (a[0])*(b[1])-(a[1])*(b[0]); |
|
} |
|
|
|
static inline double TAngle3Normalized(const double a[3], const double b[3]) |
|
{ |
|
/* |
|
angle = atan2(a dot b, |a x b|) # Bertram (accidental mistake) |
|
angle = atan2(|a x b|, a dot b) # Tolga Birdal (correction) |
|
angle = acos(a dot b) # Hamdi Sahloul (simplification, a & b are normalized) |
|
*/ |
|
|
|
return acos(TDot3(a, b)); |
|
} |
|
|
|
static inline void matrixProduct33(double *A, double *B, double *R) |
|
{ |
|
R[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6]; |
|
R[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7]; |
|
R[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8]; |
|
|
|
R[3] = A[3] * B[0] + A[4] * B[3] + A[5] * B[6]; |
|
R[4] = A[3] * B[1] + A[4] * B[4] + A[5] * B[7]; |
|
R[5] = A[3] * B[2] + A[4] * B[5] + A[5] * B[8]; |
|
|
|
R[6] = A[6] * B[0] + A[7] * B[3] + A[8] * B[6]; |
|
R[7] = A[6] * B[1] + A[7] * B[4] + A[8] * B[7]; |
|
R[8] = A[6] * B[2] + A[7] * B[5] + A[8] * B[8]; |
|
} |
|
|
|
// A is a vector |
|
static inline void matrixProduct133(double *A, double *B, double *R) |
|
{ |
|
R[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6]; |
|
R[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7]; |
|
R[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8]; |
|
} |
|
|
|
static inline void matrixProduct331(const double A[9], const double b[3], double r[3]) |
|
{ |
|
r[0] = A[0] * b[0] + A[1] * b[1] + A[2] * b[2]; |
|
r[1] = A[3] * b[0] + A[4] * b[1] + A[5] * b[2]; |
|
r[2] = A[6] * b[0] + A[7] * b[1] + A[8] * b[2]; |
|
} |
|
|
|
static inline void matrixTranspose33(double *A, double *At) |
|
{ |
|
At[0] = A[0]; |
|
At[4] = A[4]; |
|
At[8] = A[8]; |
|
At[1] = A[3]; |
|
At[2] = A[6]; |
|
At[3] = A[1]; |
|
At[5] = A[7]; |
|
At[6] = A[2]; |
|
At[7] = A[5]; |
|
} |
|
|
|
static inline void matrixProduct44(const double A[16], const double B[16], double R[16]) |
|
{ |
|
R[0] = A[0] * B[0] + A[1] * B[4] + A[2] * B[8] + A[3] * B[12]; |
|
R[1] = A[0] * B[1] + A[1] * B[5] + A[2] * B[9] + A[3] * B[13]; |
|
R[2] = A[0] * B[2] + A[1] * B[6] + A[2] * B[10] + A[3] * B[14]; |
|
R[3] = A[0] * B[3] + A[1] * B[7] + A[2] * B[11] + A[3] * B[15]; |
|
|
|
R[4] = A[4] * B[0] + A[5] * B[4] + A[6] * B[8] + A[7] * B[12]; |
|
R[5] = A[4] * B[1] + A[5] * B[5] + A[6] * B[9] + A[7] * B[13]; |
|
R[6] = A[4] * B[2] + A[5] * B[6] + A[6] * B[10] + A[7] * B[14]; |
|
R[7] = A[4] * B[3] + A[5] * B[7] + A[6] * B[11] + A[7] * B[15]; |
|
|
|
R[8] = A[8] * B[0] + A[9] * B[4] + A[10] * B[8] + A[11] * B[12]; |
|
R[9] = A[8] * B[1] + A[9] * B[5] + A[10] * B[9] + A[11] * B[13]; |
|
R[10] = A[8] * B[2] + A[9] * B[6] + A[10] * B[10] + A[11] * B[14]; |
|
R[11] = A[8] * B[3] + A[9] * B[7] + A[10] * B[11] + A[11] * B[15]; |
|
|
|
R[12] = A[12] * B[0] + A[13] * B[4] + A[14] * B[8] + A[15] * B[12]; |
|
R[13] = A[12] * B[1] + A[13] * B[5] + A[14] * B[9] + A[15] * B[13]; |
|
R[14] = A[12] * B[2] + A[13] * B[6] + A[14] * B[10] + A[15] * B[14]; |
|
R[15] = A[12] * B[3] + A[13] * B[7] + A[14] * B[11] + A[15] * B[15]; |
|
} |
|
|
|
static inline void matrixProduct441(const double A[16], const double B[4], double R[4]) |
|
{ |
|
R[0] = A[0] * B[0] + A[1] * B[1] + A[2] * B[2] + A[3] * B[3]; |
|
R[1] = A[4] * B[0] + A[5] * B[1] + A[6] * B[2] + A[7] * B[3]; |
|
R[2] = A[8] * B[0] + A[9] * B[1] + A[10] * B[2] + A[11] * B[3]; |
|
R[3] = A[12] * B[0] + A[13] * B[1] + A[14] * B[2] + A[15] * B[3]; |
|
} |
|
|
|
static inline void matrixPrint(double *A, int m, int n) |
|
{ |
|
int i, j; |
|
|
|
for (i = 0; i < m; i++) |
|
{ |
|
printf(" "); |
|
for (j = 0; j < n; j++) |
|
{ |
|
printf(" %0.6f ", A[i * n + j]); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
|
|
static inline void matrixIdentity(int n, double *A) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < n*n; i++) |
|
{ |
|
A[i] = 0.0; |
|
} |
|
|
|
for (i = 0; i < n; i++) |
|
{ |
|
A[i * n + i] = 1.0; |
|
} |
|
} |
|
|
|
static inline void rtToPose(const double R[9], const double t[3], double Pose[16]) |
|
{ |
|
Pose[0]=R[0]; |
|
Pose[1]=R[1]; |
|
Pose[2]=R[2]; |
|
Pose[4]=R[3]; |
|
Pose[5]=R[4]; |
|
Pose[6]=R[5]; |
|
Pose[8]=R[6]; |
|
Pose[9]=R[7]; |
|
Pose[10]=R[8]; |
|
Pose[3]=t[0]; |
|
Pose[7]=t[1]; |
|
Pose[11]=t[2]; |
|
|
|
Pose[15] = 1; |
|
} |
|
|
|
|
|
static inline void poseToRT(const double Pose[16], double R[9], double t[3]) |
|
{ |
|
R[0] = Pose[0]; |
|
R[1] = Pose[1]; |
|
R[2] = Pose[2]; |
|
R[3] = Pose[4]; |
|
R[4] = Pose[5]; |
|
R[5] = Pose[6]; |
|
R[6] = Pose[8]; |
|
R[7] = Pose[9]; |
|
R[8] = Pose[10]; |
|
|
|
t[0]=Pose[3]; |
|
t[1]=Pose[7]; |
|
t[2]=Pose[11]; |
|
} |
|
|
|
static inline void poseToR(const double Pose[16], double R[9]) |
|
{ |
|
R[0] = Pose[0]; |
|
R[1] = Pose[1]; |
|
R[2] = Pose[2]; |
|
R[3] = Pose[4]; |
|
R[4] = Pose[5]; |
|
R[5] = Pose[6]; |
|
R[6] = Pose[8]; |
|
R[7] = Pose[9]; |
|
R[8] = Pose[10]; |
|
} |
|
|
|
/** |
|
* \brief Axis angle to rotation but only compute y and z components |
|
*/ |
|
static inline void aaToRyz(double angle, const double r[3], double row2[3], double row3[3]) |
|
{ |
|
const double sinA=sin(angle); |
|
const double cosA=cos(angle); |
|
const double cos1A=(1-cosA); |
|
|
|
row2[0] = 0.f; |
|
row2[1] = cosA; |
|
row2[2] = 0.f; |
|
row3[0] = 0.f; |
|
row3[1] = 0.f; |
|
row3[2] = cosA; |
|
|
|
row2[0] += r[2] * sinA; |
|
row2[2] += -r[0] * sinA; |
|
row3[0] += -r[1] * sinA; |
|
row3[1] += r[0] * sinA; |
|
|
|
row2[0] += r[1] * r[0] * cos1A; |
|
row2[1] += r[1] * r[1] * cos1A; |
|
row2[2] += r[1] * r[2] * cos1A; |
|
row3[0] += r[2] * r[0] * cos1A; |
|
row3[1] += r[2] * r[1] * cos1A; |
|
row3[2] += r[2] * r[2] * cos1A; |
|
} |
|
|
|
/** |
|
* \brief Axis angle to rotation |
|
*/ |
|
static inline void aaToR(double angle, const double r[3], double R[9]) |
|
{ |
|
const double sinA=sin(angle); |
|
const double cosA=cos(angle); |
|
const double cos1A=(1-cosA); |
|
double *row1 = &R[0]; |
|
double *row2 = &R[3]; |
|
double *row3 = &R[6]; |
|
|
|
row1[0] = cosA; |
|
row1[1] = 0.0f; |
|
row1[2] = 0.f; |
|
row2[0] = 0.f; |
|
row2[1] = cosA; |
|
row2[2] = 0.f; |
|
row3[0] = 0.f; |
|
row3[1] = 0.f; |
|
row3[2] = cosA; |
|
|
|
row1[1] += -r[2] * sinA; |
|
row1[2] += r[1] * sinA; |
|
row2[0] += r[2] * sinA; |
|
row2[2] += -r[0] * sinA; |
|
row3[0] += -r[1] * sinA; |
|
row3[1] += r[0] * sinA; |
|
|
|
row1[0] += r[0] * r[0] * cos1A; |
|
row1[1] += r[0] * r[1] * cos1A; |
|
row1[2] += r[0] * r[2] * cos1A; |
|
row2[0] += r[1] * r[0] * cos1A; |
|
row2[1] += r[1] * r[1] * cos1A; |
|
row2[2] += r[1] * r[2] * cos1A; |
|
row3[0] += r[2] * r[0] * cos1A; |
|
row3[1] += r[2] * r[1] * cos1A; |
|
row3[2] += r[2] * r[2] * cos1A; |
|
} |
|
|
|
/** |
|
* \brief Compute a rotation in order to rotate around X direction |
|
*/ |
|
static inline void getUnitXRotation(double angle, double R[9]) |
|
{ |
|
const double sinA=sin(angle); |
|
const double cosA=cos(angle); |
|
double *row1 = &R[0]; |
|
double *row2 = &R[3]; |
|
double *row3 = &R[6]; |
|
|
|
row1[0] = 1; |
|
row1[1] = 0.0f; |
|
row1[2] = 0.f; |
|
row2[0] = 0.f; |
|
row2[1] = cosA; |
|
row2[2] = -sinA; |
|
row3[0] = 0.f; |
|
row3[1] = sinA; |
|
row3[2] = cosA; |
|
} |
|
/** |
|
* \brief Compute a transformation in order to rotate around X direction |
|
*/ |
|
static inline void getUnitXRotation_44(double angle, double T[16]) |
|
{ |
|
const double sinA=sin(angle); |
|
const double cosA=cos(angle); |
|
double *row1 = &T[0]; |
|
double *row2 = &T[4]; |
|
double *row3 = &T[8]; |
|
|
|
row1[0] = 1; |
|
row1[1] = 0.0f; |
|
row1[2] = 0.f; |
|
row2[0] = 0.f; |
|
row2[1] = cosA; |
|
row2[2] = -sinA; |
|
row3[0] = 0.f; |
|
row3[1] = sinA; |
|
row3[2] = cosA; |
|
|
|
row1[3]=0; |
|
row2[3]=0; |
|
row3[3]=0; |
|
T[3]=0; |
|
T[7]=0; |
|
T[11]=0; |
|
T[15] = 1; |
|
} |
|
|
|
/** |
|
* \brief Compute the yz components of the transformation needed to rotate n1 onto x axis and p1 to origin |
|
*/ |
|
static inline void computeTransformRTyz(const double p1[4], const double n1[4], double row2[3], double row3[3], double t[3]) |
|
{ |
|
// dot product with x axis |
|
double angle=acos( n1[0] ); |
|
|
|
// cross product with x axis |
|
double axis[3]={0, n1[2], -n1[1]}; |
|
double axisNorm; |
|
|
|
// we try to project on the ground plane but it's already parallel |
|
if (n1[1]==0 && n1[2]==0) |
|
{ |
|
axis[1]=1; |
|
axis[2]=0; |
|
} |
|
else |
|
{ |
|
axisNorm=sqrt(axis[2]*axis[2]+axis[1]*axis[1]); |
|
|
|
if (axisNorm>EPS) |
|
{ |
|
axis[1]/=axisNorm; |
|
axis[2]/=axisNorm; |
|
} |
|
} |
|
|
|
aaToRyz(angle, axis, row2, row3); |
|
|
|
t[1] = row2[0] * (-p1[0]) + row2[1] * (-p1[1]) + row2[2] * (-p1[2]); |
|
t[2] = row3[0] * (-p1[0]) + row3[1] * (-p1[1]) + row3[2] * (-p1[2]); |
|
} |
|
|
|
/** |
|
* \brief Compute the transformation needed to rotate n1 onto x axis and p1 to origin |
|
*/ |
|
static inline void computeTransformRT(const double p1[4], const double n1[4], double R[9], double t[3]) |
|
{ |
|
// dot product with x axis |
|
double angle=acos( n1[0] ); |
|
|
|
// cross product with x axis |
|
double axis[3]={0, n1[2], -n1[1]}; |
|
double axisNorm; |
|
double *row1, *row2, *row3; |
|
|
|
// we try to project on the ground plane but it's already parallel |
|
if (n1[1]==0 && n1[2]==0) |
|
{ |
|
axis[1]=1; |
|
axis[2]=0; |
|
} |
|
else |
|
{ |
|
axisNorm=sqrt(axis[2]*axis[2]+axis[1]*axis[1]); |
|
|
|
if (axisNorm>EPS) |
|
{ |
|
axis[1]/=axisNorm; |
|
axis[2]/=axisNorm; |
|
} |
|
} |
|
|
|
aaToR(angle, axis, R); |
|
row1 = &R[0]; |
|
row2 = &R[3]; |
|
row3 = &R[6]; |
|
|
|
t[0] = row1[0] * (-p1[0]) + row1[1] * (-p1[1]) + row1[2] * (-p1[2]); |
|
t[1] = row2[0] * (-p1[0]) + row2[1] * (-p1[1]) + row2[2] * (-p1[2]); |
|
t[2] = row3[0] * (-p1[0]) + row3[1] * (-p1[1]) + row3[2] * (-p1[2]); |
|
} |
|
|
|
/** |
|
* \brief Flip a normal to the viewing direction |
|
* |
|
* \param [in] point Scene point |
|
* \param [in] vp_x X component of view direction |
|
* \param [in] vp_y Y component of view direction |
|
* \param [in] vp_z Z component of view direction |
|
* \param [in] nx X component of normal |
|
* \param [in] ny Y component of normal |
|
* \param [in] nz Z component of normal |
|
*/ |
|
static inline void flipNormalViewpoint(const float* point, double vp_x, double vp_y, double vp_z, double *nx, double *ny, double *nz) |
|
{ |
|
double cos_theta; |
|
|
|
// See if we need to flip any plane normals |
|
vp_x -= (double)point[0]; |
|
vp_y -= (double)point[1]; |
|
vp_z -= (double)point[2]; |
|
|
|
// Dot product between the (viewpoint - point) and the plane normal |
|
cos_theta = (vp_x * (*nx) + vp_y * (*ny) + vp_z * (*nz)); |
|
|
|
// Flip the plane normal |
|
if (cos_theta < 0) |
|
{ |
|
(*nx) *= -1; |
|
(*ny) *= -1; |
|
(*nz) *= -1; |
|
} |
|
} |
|
/** |
|
* \brief Flip a normal to the viewing direction |
|
* |
|
* \param [in] point Scene point |
|
* \param [in] vp_x X component of view direction |
|
* \param [in] vp_y Y component of view direction |
|
* \param [in] vp_z Z component of view direction |
|
* \param [in] nx X component of normal |
|
* \param [in] ny Y component of normal |
|
* \param [in] nz Z component of normal |
|
*/ |
|
static inline void flipNormalViewpoint_32f(const float* point, float vp_x, float vp_y, float vp_z, float *nx, float *ny, float *nz) |
|
{ |
|
float cos_theta; |
|
|
|
// See if we need to flip any plane normals |
|
vp_x -= (float)point[0]; |
|
vp_y -= (float)point[1]; |
|
vp_z -= (float)point[2]; |
|
|
|
// Dot product between the (viewpoint - point) and the plane normal |
|
cos_theta = (vp_x * (*nx) + vp_y * (*ny) + vp_z * (*nz)); |
|
|
|
// Flip the plane normal |
|
if (cos_theta < 0) |
|
{ |
|
(*nx) *= -1; |
|
(*ny) *= -1; |
|
(*nz) *= -1; |
|
} |
|
} |
|
|
|
/** |
|
* \brief Convert a rotation matrix to axis angle representation |
|
* |
|
* \param [in] R Rotation matrix |
|
* \param [in] axis Axis vector |
|
* \param [in] angle Angle in radians |
|
*/ |
|
static inline void dcmToAA(double *R, double *axis, double *angle) |
|
{ |
|
double d1 = R[7] - R[5]; |
|
double d2 = R[2] - R[6]; |
|
double d3 = R[3] - R[1]; |
|
|
|
double norm = sqrt(d1 * d1 + d2 * d2 + d3 * d3); |
|
double x = (R[7] - R[5]) / norm; |
|
double y = (R[2] - R[6]) / norm; |
|
double z = (R[3] - R[1]) / norm; |
|
|
|
*angle = acos((R[0] + R[4] + R[8] - 1.0) * 0.5); |
|
|
|
axis[0] = x; |
|
axis[1] = y; |
|
axis[2] = z; |
|
} |
|
|
|
/** |
|
* \brief Convert axis angle representation to rotation matrix |
|
* |
|
* \param [in] axis Axis Vector |
|
* \param [in] angle Angle (In radians) |
|
* \param [in] R 3x3 Rotation matrix |
|
*/ |
|
static inline void aaToDCM(double *axis, double angle, double *R) |
|
{ |
|
double ident[9]={1,0,0,0,1,0,0,0,1}; |
|
double n[9] = { 0.0, -axis[2], axis[1], |
|
axis[2], 0.0, -axis[0], |
|
-axis[1], axis[0], 0.0 |
|
}; |
|
|
|
double nsq[9]; |
|
double c, s; |
|
int i; |
|
|
|
//c = 1-cos(angle); |
|
c = cos(angle); |
|
s = sin(angle); |
|
|
|
matrixProduct33(n, n, nsq); |
|
|
|
for (i = 0; i < 9; i++) |
|
{ |
|
const double sni = n[i]*s; |
|
const double cnsqi = nsq[i]*(c); |
|
R[i]=ident[i]+sni+cnsqi; |
|
} |
|
|
|
// The below code is the matrix based implemntation of the above |
|
// double nsq[9], sn[9], cnsq[9], tmp[9]; |
|
//matrix_scale(3, 3, n, s, sn); |
|
//matrix_scale(3, 3, nsq, (1 - c), cnsq); |
|
//matrix_sum(3, 3, 3, 3, ident, sn, tmp); |
|
//matrix_sum(3, 3, 3, 3, tmp, cnsq, R); |
|
} |
|
|
|
/** |
|
* \brief Convert a discrete cosine matrix to quaternion |
|
* |
|
* \param [in] R Rotation Matrix |
|
* \param [in] q Quaternion |
|
*/ |
|
static inline void dcmToQuat(double *R, double *q) |
|
{ |
|
double n4; // the norm of quaternion multiplied by 4 |
|
double tr = R[0] + R[4] + R[8]; // trace of martix |
|
double factor; |
|
|
|
if (tr > 0.0) |
|
{ |
|
q[1] = R[5] - R[7]; |
|
q[2] = R[6] - R[2]; |
|
q[3] = R[1] - R[3]; |
|
q[0] = tr + 1.0; |
|
n4 = q[0]; |
|
} |
|
else |
|
if ((R[0] > R[4]) && (R[0] > R[8])) |
|
{ |
|
q[1] = 1.0 + R[0] - R[4] - R[8]; |
|
q[2] = R[3] + R[1]; |
|
q[3] = R[6] + R[2]; |
|
q[0] = R[5] - R[7]; |
|
n4 = q[1]; |
|
} |
|
else |
|
if (R[4] > R[8]) |
|
{ |
|
q[1] = R[3] + R[1]; |
|
q[2] = 1.0 + R[4] - R[0] - R[8]; |
|
q[3] = R[7] + R[5]; |
|
q[0] = R[6] - R[2]; |
|
n4 = q[2]; |
|
} |
|
else |
|
{ |
|
q[1] = R[6] + R[2]; |
|
q[2] = R[7] + R[5]; |
|
q[3] = 1.0 + R[8] - R[0] - R[4]; |
|
q[0] = R[1] - R[3]; |
|
n4 = q[3]; |
|
} |
|
|
|
factor = 0.5 / sqrt(n4); |
|
q[0] *= factor; |
|
q[1] *= factor; |
|
q[2] *= factor; |
|
q[3] *= factor; |
|
} |
|
|
|
/** |
|
* \brief Convert quaternion to a discrete cosine matrix |
|
* |
|
* \param [in] q Quaternion (w is at first element) |
|
* \param [in] R Rotation Matrix |
|
* |
|
*/ |
|
static inline void quatToDCM(double *q, double *R) |
|
{ |
|
double sqw = q[0] * q[0]; |
|
double sqx = q[1] * q[1]; |
|
double sqy = q[2] * q[2]; |
|
double sqz = q[3] * q[3]; |
|
|
|
double tmp1, tmp2; |
|
|
|
R[0] = sqx - sqy - sqz + sqw; // since sqw + sqx + sqy + sqz = 1 |
|
R[4] = -sqx + sqy - sqz + sqw; |
|
R[8] = -sqx - sqy + sqz + sqw; |
|
|
|
tmp1 = q[1] * q[2]; |
|
tmp2 = q[3] * q[0]; |
|
|
|
R[1] = 2.0 * (tmp1 + tmp2); |
|
R[3] = 2.0 * (tmp1 - tmp2); |
|
|
|
tmp1 = q[1] * q[3]; |
|
tmp2 = q[2] * q[0]; |
|
|
|
R[2] = 2.0 * (tmp1 - tmp2); |
|
R[6] = 2.0 * (tmp1 + tmp2); |
|
|
|
tmp1 = q[2] * q[3]; |
|
tmp2 = q[1] * q[0]; |
|
|
|
R[5] = 2.0 * (tmp1 + tmp2); |
|
R[7] = 2.0 * (tmp1 - tmp2); |
|
} |
|
|
|
} // namespace ppf_match_3d |
|
|
|
} // namespace cv |
|
|
|
#endif
|
|
|