You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
7.7 KiB
231 lines
7.7 KiB
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "im2col.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
//TODO: simultaneously convolution and bias addition for cache optimization |
|
class ConvolutionLayer : public Layer |
|
{ |
|
protected: |
|
bool bias; |
|
int numOutput, group; |
|
int padH, padW; |
|
int kerH, kerW; |
|
int strideH, strideW; |
|
|
|
int inpH, inpW, inpCn; |
|
int outH, outW, outCn; |
|
int topH, topW, topCn; //switched between inp/out on deconv/conv |
|
int inpGroupCn, outGroupCn; |
|
int ksize; |
|
|
|
Mat colMat, biasOnesMat; |
|
|
|
inline bool is1x1() const; |
|
virtual void computeInpOutShape(const Blob &inpBlob); |
|
void im2col(Blob &inpBlob, int imNum, int cnGroup); |
|
|
|
public: |
|
ConvolutionLayer(LayerParams ¶ms); |
|
void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs); |
|
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs); |
|
}; |
|
|
|
class DeConvolutionLayer : public ConvolutionLayer |
|
{ |
|
protected: |
|
void computeInpOutShape(const Blob &inpBlob); |
|
void col2im(Mat &dstMat); |
|
|
|
public: |
|
DeConvolutionLayer(LayerParams ¶ms) : ConvolutionLayer(params) {} |
|
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs); |
|
}; |
|
|
|
|
|
REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer) |
|
REGISTER_LAYER_CLASS(Deconvolution, DeConvolutionLayer) |
|
|
|
|
|
ConvolutionLayer::ConvolutionLayer(LayerParams ¶ms) |
|
{ |
|
getKernelParams(params, kerH, kerW, padH, padW, strideH, strideW); |
|
|
|
numOutput = params.get<int>("num_output"); |
|
bias = params.get<bool>("bias_term", true); |
|
group = params.get<int>("group", 1); |
|
CV_Assert(numOutput % group == 0); |
|
|
|
CV_Assert(params.learnedBlobs.size() >= 1 && (!bias || params.learnedBlobs.size() >= 2)); |
|
learnedParams.assign(params.learnedBlobs.begin(), params.learnedBlobs.begin() + (bias ? 2 : 1)); |
|
|
|
const Blob &wgtBlob = learnedParams[0]; |
|
CV_Assert(wgtBlob.dims() == 4 && wgtBlob.cols() == kerW && wgtBlob.rows() == kerH && wgtBlob.num() == numOutput); |
|
|
|
if (bias) |
|
{ |
|
Blob &biasBlob = learnedParams[1]; |
|
CV_Assert(biasBlob.total() == (size_t)numOutput); |
|
} |
|
} |
|
|
|
void ConvolutionLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
|
|
const Blob &inpBlob = *inputs[0]; |
|
CV_Assert(inpBlob.dims() == 4 && inpBlob.type() == CV_32F); |
|
computeInpOutShape(inpBlob); |
|
|
|
CV_Assert(inpCn % group == 0 && outCn % group == 0); |
|
CV_Assert(learnedParams[0].channels() == inpCn / group); |
|
CV_Assert(learnedParams[0].num() == outCn); |
|
|
|
outGroupCn = outCn / group; |
|
inpGroupCn = inpCn / group; |
|
ksize = inpGroupCn * kerH * kerW; |
|
|
|
outputs.resize(inputs.size()); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
CV_Assert(inputs[i]->type() == inpBlob.type()); |
|
CV_Assert(inputs[i]->dims() == 4 && inputs[i]->channels() == inpBlob.channels()); |
|
CV_Assert(inputs[i]->rows() == inpBlob.rows() && inputs[i]->cols() == inpBlob.cols()); |
|
|
|
outputs[i].create(BlobShape(inputs[i]->num(), topCn, topH, topW)); |
|
} |
|
|
|
if (!is1x1()) |
|
colMat.create(ksize, outH * outW, inpBlob.type()); |
|
|
|
if (bias) |
|
biasOnesMat = Mat::ones(1, topH * topW, inpBlob.type()); |
|
} |
|
|
|
inline bool ConvolutionLayer::is1x1() const |
|
{ |
|
return (kerH == 1 && kerW == 1); |
|
} |
|
|
|
void ConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
|
{ |
|
Blob &wgtBlob = learnedParams[0]; |
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
{ |
|
Blob &inpBlob = *inputs[ii]; |
|
Blob &outBlob = outputs[ii]; |
|
|
|
for (int n = 0; n < inpBlob.num(); n++) |
|
{ |
|
for (int g = 0; g < group; g++) |
|
{ |
|
im2col(inpBlob, n, g); |
|
|
|
Mat kerMat(outGroupCn, ksize, wgtBlob.type(), wgtBlob.ptrRaw(g*outGroupCn)); |
|
Mat dstMat(outGroupCn, outH*outW, outBlob.type(), outBlob.ptrRaw(n, g*outGroupCn)); |
|
|
|
cv::gemm(kerMat, colMat, 1, noArray(), 0, dstMat); |
|
|
|
if (bias) |
|
{ |
|
float *biasPtr = learnedParams[1].ptrf() + g*outGroupCn; |
|
Mat biasMat(outGroupCn, 1, CV_32F, biasPtr); |
|
cv::gemm(biasMat, biasOnesMat, 1, dstMat, 1, dstMat); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void ConvolutionLayer::im2col(Blob &inpBlob, int imNum, int cnGroup) |
|
{ |
|
uchar *srcPtr = inpBlob.ptrRaw(imNum, cnGroup*inpGroupCn); |
|
|
|
if (is1x1()) |
|
{ |
|
colMat = Mat(ksize, inpBlob.rows()*inpBlob.cols(), inpBlob.type(), srcPtr); |
|
return; |
|
} |
|
|
|
if (inpBlob.type() == CV_32F) |
|
im2col_cpu((float *)srcPtr, inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (float *)colMat.ptr()); |
|
if (inpBlob.type() == CV_64F) |
|
im2col_cpu((double*)srcPtr, inpGroupCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)colMat.ptr()); |
|
} |
|
|
|
void ConvolutionLayer::computeInpOutShape(const Blob &inpBlob) |
|
{ |
|
inpH = inpBlob.rows(); |
|
inpW = inpBlob.cols(); |
|
inpCn = inpBlob.channels(); |
|
|
|
outH = (inpH + 2 * padH - kerH) / strideH + 1; |
|
outW = (inpW + 2 * padW - kerW) / strideW + 1; |
|
outCn = learnedParams[0].num(); |
|
|
|
topH = outH; topW = outW; topCn = outCn; |
|
} |
|
|
|
void DeConvolutionLayer::computeInpOutShape(const Blob &inpBlob) |
|
{ |
|
outH = inpBlob.rows(); |
|
outW = inpBlob.cols(); |
|
outCn = inpBlob.channels(); |
|
|
|
inpH = strideH * (outH - 1) + kerH - 2 * padH; |
|
inpW = strideW * (outW - 1) + kerW - 2 * padW; |
|
inpCn = learnedParams[0].channels(); |
|
|
|
topH = inpH; topW = inpW; topCn = inpCn; |
|
} |
|
|
|
void DeConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs) |
|
{ |
|
Blob &wghtBlob = learnedParams[0]; |
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
{ |
|
Blob &convBlob = *inputs[ii]; |
|
Blob &decnBlob = outputs[ii]; |
|
|
|
for (int n = 0; n < convBlob.num(); n++) |
|
{ |
|
for (int g = 0; g < group; g++) |
|
{ |
|
Mat dstMat(inpGroupCn, inpH*inpW, decnBlob.type(), decnBlob.ptrRaw(n, g*inpGroupCn)); |
|
|
|
if (is1x1()) |
|
colMat = dstMat; |
|
|
|
Mat convMat(outGroupCn, outH*outW, convBlob.type(), convBlob.ptrRaw(n, g*inpGroupCn)); |
|
Mat wghtMat(outGroupCn, ksize, wghtBlob.type(), wghtBlob.ptrRaw(g*inpGroupCn)); |
|
cv::gemm(wghtMat, convMat, 1, noArray(), 0, colMat, GEMM_1_T); |
|
|
|
col2im(dstMat); |
|
|
|
if (bias) |
|
{ |
|
float *biasPtr = learnedParams[1].ptrf() + g*outGroupCn; |
|
Mat biasMat(outGroupCn, 1, CV_32F, biasPtr); |
|
cv::gemm(biasMat, biasOnesMat, 1, dstMat, 1, dstMat); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void DeConvolutionLayer::col2im(Mat &dstMat) |
|
{ |
|
if (is1x1()) return; |
|
|
|
if (dstMat.type() == CV_32F) |
|
col2im_cpu((float*)colMat.ptr(), inpCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (float*)dstMat.ptr()); |
|
if (dstMat.type() == CV_64F) |
|
col2im_cpu((double*)colMat.ptr(), inpCn, inpH, inpW, kerH, kerW, padH, padW, strideH, strideW, (double*)dstMat.ptr()); |
|
} |
|
} |
|
}
|
|
|