You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
18 KiB
479 lines
18 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace opencv_test { |
|
namespace { |
|
|
|
// This function force a row major order for the labels |
|
template <typename LabelT> |
|
void normalize_labels_impl(Mat& labels) { |
|
std::map<LabelT, LabelT> map_new_labels; |
|
LabelT i_max_new_label = 0; |
|
|
|
for (int r = 0; r < labels.rows; ++r) { |
|
LabelT* const mat_row = labels.ptr<LabelT>(r); |
|
for (int c = 0; c < labels.cols; ++c) { |
|
LabelT iCurLabel = mat_row[c]; |
|
if (iCurLabel > 0) { |
|
if (map_new_labels.find(iCurLabel) == map_new_labels.end()) { |
|
map_new_labels[iCurLabel] = ++i_max_new_label; |
|
} |
|
mat_row[c] = map_new_labels.at(iCurLabel); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void normalize_labels(Mat& labels) { |
|
|
|
int type = labels.type(); |
|
int depth = type & CV_MAT_DEPTH_MASK; |
|
int chans = 1 + (type >> CV_CN_SHIFT); |
|
|
|
CV_Assert(chans == 1); |
|
CV_Assert(depth == CV_16U || depth == CV_16S || depth == CV_32S); |
|
|
|
switch (depth) { |
|
case CV_16U: normalize_labels_impl<ushort>(labels); break; |
|
case CV_16S: normalize_labels_impl<short>(labels); break; |
|
case CV_32S: normalize_labels_impl<int>(labels); break; |
|
default: CV_Assert(0); |
|
} |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////// |
|
// ConnectedComponents |
|
|
|
PARAM_TEST_CASE(ConnectedComponents, cv::cuda::DeviceInfo, int, int, cv::cuda::ConnectedComponentsAlgorithmsTypes) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
int connectivity; |
|
int ltype; |
|
cv::cuda::ConnectedComponentsAlgorithmsTypes algo; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
connectivity = GET_PARAM(1); |
|
ltype = GET_PARAM(2); |
|
algo = GET_PARAM(3); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(ConnectedComponents, Chessboard_Even) |
|
{ |
|
std::initializer_list<int> sizes{ 16, 16 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = cv::Mat1b(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
|
}); |
|
|
|
if (connectivity == 8) { |
|
correct_output_int = cv::Mat1i(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
|
}); |
|
} |
|
else { |
|
correct_output_int = cv::Mat1i(sizes, { |
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, |
|
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, |
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, |
|
0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, |
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, |
|
0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, |
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, |
|
0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, |
|
65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0, |
|
0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80, |
|
81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, |
|
0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, |
|
97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, |
|
0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, |
|
113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0, |
|
0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128 |
|
}); |
|
} |
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
CUDA_TEST_P(ConnectedComponents, Chessboard_Odd) |
|
{ |
|
std::initializer_list<int> sizes{ 15, 15 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = Mat1b(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
|
}); |
|
|
|
if (connectivity == 8) { |
|
correct_output_int = Mat1i(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
|
}); |
|
} |
|
else { |
|
correct_output_int = Mat1i(sizes, { |
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, |
|
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, |
|
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, |
|
0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, |
|
31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, |
|
0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, |
|
46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53, |
|
0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0, |
|
61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68, |
|
0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0, |
|
76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83, |
|
0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0, |
|
91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98, |
|
0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0, |
|
106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113 |
|
}); |
|
} |
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
CUDA_TEST_P(ConnectedComponents, Maxlabels_8conn_Even) |
|
{ |
|
std::initializer_list<int> sizes{ 16, 16 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = Mat1b(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
}); |
|
|
|
correct_output_int = Mat1i(sizes, { |
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
}); |
|
|
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
CUDA_TEST_P(ConnectedComponents, Maxlabels_8conn_Odd) |
|
{ |
|
std::initializer_list<int> sizes{ 15, 15 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = Mat1b(sizes, { |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
|
}); |
|
|
|
correct_output_int = Mat1i(sizes, { |
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64 |
|
}); |
|
|
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
CUDA_TEST_P(ConnectedComponents, Single_Row) |
|
{ |
|
std::initializer_list<int> sizes{ 1, 15 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = Mat1b(sizes, { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }); |
|
correct_output_int = Mat1i(sizes, { 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8 }); |
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
CUDA_TEST_P(ConnectedComponents, Single_Column) |
|
{ |
|
std::initializer_list<int> sizes{ 15, 1 }; |
|
cv::Mat1b input; |
|
cv::Mat1i correct_output_int; |
|
cv::Mat correct_output; |
|
|
|
// Chessboard image with even number of rows and cols |
|
// Note that this is the maximum number of labels for 4-way connectivity |
|
{ |
|
input = Mat1b(sizes, { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }); |
|
correct_output_int = Mat1i(sizes, { 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8 }); |
|
} |
|
|
|
correct_output_int.convertTo(correct_output, CV_MAT_DEPTH(ltype)); |
|
|
|
cv::Mat labels; |
|
cv::Mat diff; |
|
|
|
cv::cuda::GpuMat d_input; |
|
cv::cuda::GpuMat d_labels; |
|
d_input.upload(input); |
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_input, d_labels, connectivity, ltype, algo)); |
|
d_labels.download(labels); |
|
normalize_labels(labels); |
|
|
|
diff = labels != correct_output; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
|
|
CUDA_TEST_P(ConnectedComponents, Concentric_Circles) |
|
{ |
|
string img_path = cvtest::TS::ptr()->get_data_path() + "connectedcomponents/concentric_circles.png"; |
|
string exp_path = cvtest::TS::ptr()->get_data_path() + "connectedcomponents/ccomp_exp.png"; |
|
|
|
Mat img = imread(img_path, 0); |
|
EXPECT_FALSE(img.empty()); |
|
|
|
Mat exp = imread(exp_path, 0); |
|
EXPECT_FALSE(exp.empty()); |
|
|
|
Mat labels; |
|
exp.convertTo(exp, ltype); |
|
|
|
GpuMat d_img; |
|
GpuMat d_labels; |
|
d_img.upload(img); |
|
|
|
EXPECT_NO_THROW(cv::cuda::connectedComponents(d_img, d_labels, connectivity, ltype, algo)); |
|
|
|
d_labels.download(labels); |
|
|
|
normalize_labels(labels); |
|
|
|
Mat diff = labels != exp; |
|
EXPECT_EQ(cv::countNonZero(diff), 0); |
|
|
|
} |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, ConnectedComponents, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(8), |
|
testing::Values(CV_32S), |
|
testing::Values(cv::cuda::CCL_DEFAULT, cv::cuda::CCL_BKE) |
|
)); |
|
|
|
|
|
} |
|
} // namespace |
|
#endif // HAVE_CUDA
|
|
|