Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

731 lines
23 KiB

/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2013, 2016
*
* Tomasz Trzcinski <t dot trzcinski at ii dot pw dot edu dot pl>
* Mario Christoudias <mariochristoudias at gmail dot com>
* Vincent Lepetit <lepetit at icg dot tugraz dot at>
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/*
"Learning Image Descriptors with Boosting"
T. Trzcinski, M. Christoudias and V. Lepetit
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013
"Boosting Binary Keypoint Descriptors"
T. Trzcinski, M. Christoudias, V. Lepetit and P. Fua
Computer Vision and Pattern Recognition (CVPR), 2013
Original code: Tomasz Trzcinski <t dot trzcinski at ii dot pw dot edu dot pl>
OpenCV port by: Cristian Balint <cristian dot balint at gmail dot com>
*/
#include <bitset>
#include "precomp.hpp"
using namespace cv;
using namespace std;
namespace cv
{
namespace xfeatures2d
{
/*
!BoostDesc implementation
*/
class BoostDesc_Impl : public BoostDesc
{
public:
// constructor
explicit BoostDesc_Impl( int desc = BINBOOST_256,
bool use_scale_orientation = true,
float scale_factor = 6.25f );
// destructor
virtual ~BoostDesc_Impl();
// returns the descriptor length in bytes
virtual int descriptorSize() const { return m_descriptor_size; }
// returns the descriptor type
virtual int descriptorType() const { return m_descriptor_type; }
// returns the default norm type
virtual int defaultNorm() const { return m_descriptor_norm; }
// compute descriptors given keypoints
virtual void compute( InputArray image, vector<KeyPoint>& keypoints, OutputArray descriptors );
protected:
/*
* BoostDesc parameters
*/
// size, type, norm
int m_descriptor_size;
int m_descriptor_type;
int m_descriptor_norm;
// desc type
int m_desc_type;
// gradient
// assignment types
enum Assign
{
ASSIGN_HARD = 0,
ASSIGN_BILINEAR = 1,
ASSIGN_SOFT = 2,
ASSIGN_HARD_MAGN = 3,
ASSIGN_SOFT_MAGN = 4
};
// dims
int m_Dims;
// no. weak
// learners
int m_nWLs;
// gradient type
int m_grad_atype;
// patch size
int m_patch_size;
// orient quantitiy
int m_orient_q;
// patch scale factor
float m_scale_factor;
/*
* BoostDesc switches
*/
// switch to enable sample by keypoints orientation
bool m_use_scale_orientation;
/*
* BoostDesc arrays
*/
// image
Mat m_image;
// parameters
// weak learner
Mat m_wl_thresh;
Mat m_wl_orient;
Mat m_wl_x_min, m_wl_x_max;
Mat m_wl_y_min, m_wl_y_max;
Mat m_wl_alpha, m_wl_beta;
private:
/*
* BoostDesc functions
*/
// initialize parameters
inline void ini_params( const int orientQuant, const int patchSize,
const int iGradAssignType,
const int nDim, const int nWLs,
const unsigned int thresh[], const int orient[],
const int x_min[], const int x_max[],
const int y_min[], const int y_max[],
const unsigned int alpha[], const unsigned int beta[] );
}; // END BoostDesc_Impl CLASS
// -------------------------------------------------
/* BoostDesc internal routines */
static void computeGradientMaps( const Mat& im,
const int gradAssignType,
const int orientQuant,
vector<Mat>& gradMap )
{
enum Assign
{
ASSIGN_HARD = 0,
ASSIGN_BILINEAR = 1,
ASSIGN_SOFT = 2,
ASSIGN_HARD_MAGN = 3,
ASSIGN_SOFT_MAGN = 4
};
Mat derivx( im.size(), CV_32FC1 );
Mat derivy( im.size(), CV_32FC1 );
Sobel( im, derivx, derivx.depth(), 1, 0 );
Sobel( im, derivy, derivy.depth(), 0, 1 );
for ( int i = 0; i < orientQuant; i++ )
gradMap.push_back( Mat::zeros( im.size(), CV_8UC1 ) );
int index, index2;
double binCenter, weight;
double binSize = (2 * CV_PI) / orientQuant;
// fill in temp matrices with
// respones to edge detection
const float* pDerivx = derivx.ptr<float>();
const float* pDerivy = derivy.ptr<float>();
for ( int i = 0; i < im.rows; i++ )
{
for ( int j = 0; j < im.cols; j++ )
{
float gradMagnitude = sqrt( (*pDerivx) * (*pDerivx)
+ (*pDerivy) * (*pDerivy) );
if ( gradMagnitude > 20 )
{
double theta = atan2( *pDerivy, *pDerivx );
theta = ( theta < 0 ) ? theta + 2*CV_PI : theta;
index = int( theta / binSize );
index = ( index == orientQuant ) ? 0 : index;
switch ( gradAssignType )
{
case ASSIGN_HARD:
gradMap[index].at<uchar>(i,j) = 1;
break;
case ASSIGN_HARD_MAGN:
gradMap[index].at<uchar>(i,j) = (uchar) cvRound( gradMagnitude );
break;
case ASSIGN_BILINEAR:
index2 = (int) ceil( theta / binSize );
index2 = ( index2 == orientQuant ) ? 0 : index2;
binCenter = ( index + 0.5f ) * binSize;
weight = 1 - abs( theta - binCenter ) / binSize;
gradMap[index ].at<uchar>(i,j) = (uchar) cvRound( 255 * weight );
gradMap[index2].at<uchar>(i,j) = (uchar) cvRound( 255 * ( 1 - weight ) );
break;
case ASSIGN_SOFT:
for ( int binNum = 0; binNum < orientQuant/2 + 1; binNum++ )
{
index2 = ( binNum + index + orientQuant - orientQuant/4 ) % orientQuant;
binCenter = ( index2 + 0.5f ) * binSize;
weight = cos( theta - binCenter );
weight = ( weight < 0 ) ? 0 : weight;
gradMap[index2].at<uchar>(i,j) = (uchar) cvRound( 255 * weight );
}
break;
case ASSIGN_SOFT_MAGN:
for ( int binNum = 0; binNum < orientQuant/2 + 1; binNum++ )
{
index2 = ( binNum + index + orientQuant - orientQuant/4 ) % orientQuant;
binCenter = ( index2 + 0.5f ) * binSize;
weight = cos( theta - binCenter );
weight = ( weight < 0 ) ? 0 : weight;
gradMap[index2].at<uchar>(i,j) = (uchar) cvRound( gradMagnitude * weight );
}
break;
} // end switch
}
++pDerivy;
++pDerivx;
}
}
}
static void computeIntegrals( const vector<Mat>& gradMap,
const int orientQuant,
vector<Mat>& integralMap )
{
// init integral images
int rows = gradMap[0].rows;
int cols = gradMap[0].cols;
for ( int i = 0; i < orientQuant+1; i++ )
integralMap.push_back( Mat::zeros( rows+1, cols+1, CV_8UC1 ) );
// generate corresponding integral images
for( int i = 0; i < orientQuant; i++ )
integral( gradMap[i], integralMap[i] );
// copy the values from the first quantization bin
integralMap[0].copyTo( integralMap[orientQuant] );
int* ptrSum, *ptr;
for ( int k = 1; k < orientQuant; k++ )
{
ptr = (int*) integralMap[k].ptr<int>();
ptrSum = (int*) integralMap[orientQuant].ptr<int>();
for (int i=0; i<(rows+1)*(cols+1); ++i)
{
*ptrSum += *ptr;
++ptrSum;
++ptr;
}
}
}
static float computeWLResponse( const int x_min, const int x_max,
const int y_min, const int y_max,
const int orient, const float thresh,
const int orientQuant,
const vector<Mat>& integralMap )
{
const int width = integralMap[0].cols;
const int idx1 = (y_min ) * width + x_min;
const int idx2 = (y_min ) * width + x_max + 1;
const int idx3 = (y_max + 1) * width + x_min;
const int idx4 = (y_max + 1) * width + x_max + 1;
const int* ptr = integralMap[orient].ptr<int>();
int A, B ,C, D;
A = ptr[idx1]; B = ptr[idx2];
C = ptr[idx3]; D = ptr[idx4];
const float current = float(D + A - B - C);
ptr = integralMap[orientQuant].ptr<int>();
A = ptr[idx1]; B = ptr[idx2];
C = ptr[idx3]; D = ptr[idx4];
const float total = float(D + A - B - C);
return total ? ( (current / total) - thresh ) : 0.f;
}
static void rectifyPatch( const Mat& image, const KeyPoint& kp,
const int& patchSize, Mat& patch,
const bool use_scale_orientation,
const float scale_factor )
{
Mat M;
if ( use_scale_orientation )
{
const float s = scale_factor * (float) kp.size / (float) patchSize;
const float cosine = (kp.angle>=0) ? cos(kp.angle*(float)CV_PI/180.0f) : 1.f;
const float sine = (kp.angle>=0) ? sin(kp.angle*(float)CV_PI/180.0f) : 0.f;
float M_[] = {
s*cosine, -s*sine, (-s*cosine + s*sine ) * patchSize/2.0f + kp.pt.x,
s*sine, s*cosine, (-s*sine - s*cosine) * patchSize/2.0f + kp.pt.y
};
M = Mat( 2, 3, CV_32FC1, M_ ).clone();
}
else
{
float M_[] = {
1.f, 0.f, -1.f * patchSize/2.0f + kp.pt.x,
0.f, 1.f, -1.f * patchSize/2.0f + kp.pt.y
};
M = Mat( 2, 3, CV_32FC1, M_ ).clone();
}
warpAffine( image, patch, M, Size( patchSize, patchSize ),
WARP_INVERSE_MAP + INTER_CUBIC + WARP_FILL_OUTLIERS );
}
// -------------------------------------------------
/* BoostDesc interface implementation */
struct ComputeBoostDescInvoker : ParallelLoopBody
{
ComputeBoostDescInvoker( const Mat& _image, Mat* _descriptors,
const vector<KeyPoint>& _keypoints,
const int _desc_type, const int _grad_atype,
const int _orient_q, const int _patch_size,
const int _nWLs, const int _Dims,
const Mat& _wl_x_min, const Mat& _wl_x_max,
const Mat& _wl_y_min, const Mat& _wl_y_max,
const Mat& _wl_thresh, const Mat& _wl_orient,
const Mat& _wl_alpha, const Mat& _wl_beta,
const bool _use_scale_orientation,
const float _scale_factor )
{
nWLs = _nWLs;
Dims = _Dims;
image = _image;
orient_q = _orient_q;
desc_type = _desc_type;
keypoints = _keypoints;
grad_atype = _grad_atype;
patch_size = _patch_size;
descriptors = _descriptors;
wl_beta = _wl_beta;
wl_alpha = _wl_alpha;
wl_x_min = _wl_x_min;
wl_x_max = _wl_x_max;
wl_y_min = _wl_y_min;
wl_y_max = _wl_y_max;
wl_thresh = _wl_thresh;
wl_orient = _wl_orient;
scale_factor = _scale_factor;
use_scale_orientation = _use_scale_orientation;
}
void operator ()( const cv::Range& range ) const
{
// maps
vector<Mat> gradMap, integralMap;
// small binary map
uchar binLookUp[8];
for ( unsigned int i = 0; i < 8; i++ )
binLookUp[i] = (uchar) 1 << i;
for ( int i = range.start; i < range.end; i++ )
{
Mat patch;
// rectify the patch around a given keypoint
rectifyPatch( image, keypoints[i], patch_size,
patch, use_scale_orientation, scale_factor );
// compute gradient maps (and integral gradient maps)
computeGradientMaps( patch, grad_atype, orient_q, gradMap );
computeIntegrals( gradMap, orient_q, integralMap );
float WLR;
/*
* BGM
*/
if ( ( desc_type == BGM ) ||
( desc_type == BGM_HARD ) ||
( desc_type == BGM_BILINEAR )
)
{
uchar* desc = descriptors->ptr<uchar>(i);
for ( int j = 0; j < nWLs; j++ )
{
WLR = computeWLResponse( wl_x_min.at<int>(0,j), wl_x_max.at<int>(0,j),
wl_y_min.at<int>(0,j), wl_y_max.at<int>(0,j),
wl_orient.at<int>(0,j), wl_thresh.at<float>(0,j),
orient_q, integralMap );
desc[j/8] |= ( WLR >= 0 ) ? binLookUp[ j % 8 ] : 0;
}
} // end BGM
/*
* LBGM
*/
if ( desc_type == LBGM )
{
std::bitset<512> wlResponses;
for ( int j = 0; j < nWLs; j++ )
{
WLR = computeWLResponse( wl_x_min.at<int>(0,j), wl_x_max.at<int>(0,j),
wl_y_min.at<int>(0,j), wl_y_max.at<int>(0,j),
wl_orient.at<int>(0,j), wl_thresh.at<float>(0,j),
orient_q, integralMap );
wlResponses[j] = ( WLR >= 0 ) ? 1 : 0;
}
float* desc = descriptors->ptr<float>(i);
for ( int d = 0; d < Dims; d++ )
{
for ( int wl = 0; wl < nWLs; wl++ )
{
desc[d] += ( wlResponses[wl] ) ? wl_beta.at<float>(wl,d) : -wl_beta.at<float>(wl,d);
}
}
} // end LBGM
/*
* BINBOOST
*/
if ( ( desc_type == BINBOOST_64 ) ||
( desc_type == BINBOOST_128 ) ||
( desc_type == BINBOOST_256 )
)
{
float resp;
for ( int d = 0; d < Dims; d++ )
{
resp = 0;
uchar* desc = descriptors->ptr<uchar>(i);
for ( int wl = 0; wl < nWLs; wl++ )
{
WLR = computeWLResponse( wl_x_min.at<int>(d,wl), wl_x_max.at<int>(d,wl),
wl_y_min.at<int>(d,wl), wl_y_max.at<int>(d,wl),
wl_orient.at<int>(d,wl), wl_thresh.at<float>(d,wl),
orient_q, integralMap );
resp += ( WLR >= 0 ) ? wl_beta.at<float>(d,wl) : -wl_beta.at<float>(d,wl);
}
desc[d/8] |= ( resp >= 0 ) ? binLookUp[d%8] : 0;
}
} // end BINBOOST
// clean-up
patch.release();
gradMap.clear();
integralMap.clear();
} // end for loop
} // end operator
int nWLs;
int Dims;
int orient_q;
int desc_type;
int patch_size;
int grad_atype;
int patch_szie;
Mat image;
Mat *descriptors;
vector<KeyPoint> keypoints;
Mat wl_x_min, wl_x_max, wl_y_min, wl_y_max;
Mat wl_thresh, wl_orient, wl_alpha, wl_beta;
float scale_factor;
bool use_scale_orientation;
enum
{
BGM = 100, BGM_HARD = 101, BGM_BILINEAR = 102, LBGM = 200,
BINBOOST_64 = 300, BINBOOST_128 = 301, BINBOOST_256 = 302
};
};
// descriptor computation using keypoints
void BoostDesc_Impl::compute( InputArray _image, vector<KeyPoint>& keypoints, OutputArray _descriptors )
{
// do nothing if no image
if( _image.getMat().empty() )
return;
if( keypoints.empty() )
return;
m_image = _image.getMat().clone();
// Only 8bit images
CV_Assert( m_image.depth() == CV_8U );
// convert to gray inplace
if( m_image.channels() > 1 )
cvtColor( m_image, m_image, COLOR_BGR2GRAY );
// initialize the variables
_descriptors.create( (int)keypoints.size(), descriptorSize(), descriptorType() );
_descriptors.setTo( Scalar::all(0) );
// descriptor storage
Mat descriptors = _descriptors.getMat();
parallel_for_( Range( 0, (int) keypoints.size() ),
ComputeBoostDescInvoker( m_image, &descriptors, keypoints,
m_desc_type, m_grad_atype, m_orient_q,
m_patch_size, m_nWLs, m_Dims,
m_wl_x_min, m_wl_x_max, m_wl_y_min, m_wl_y_max,
m_wl_thresh, m_wl_orient, m_wl_alpha, m_wl_beta,
m_use_scale_orientation, m_scale_factor )
);
}
void BoostDesc_Impl::ini_params( const int orientQuant, const int patchSize,
const int iGradAssignType,
const int nDim, const int nWLs,
const unsigned int thresh[], const int orient[],
const int x_min[], const int x_max[],
const int y_min[], const int y_max[],
const unsigned int alpha[], const unsigned int beta[] )
{
// desc type, norm, size
if ( m_desc_type == LBGM )
{
m_descriptor_size = nDim;
m_descriptor_norm = NORM_L2;
m_descriptor_type = CV_32FC1;
}
else
{
if ( ( m_desc_type == BGM ) ||
( m_desc_type == BGM_HARD ) ||
( m_desc_type == BGM_BILINEAR )
)
m_descriptor_size = nWLs / 8;
else
m_descriptor_size = nDim / 8;
m_descriptor_type = CV_8UC1;
m_descriptor_norm = NORM_HAMMING;
}
// 2d array dim
int dim0 = nDim;
int dim1 = nWLs;
// override beta dim0 on LBGM
if ( m_desc_type == LBGM ) dim0 = 1;
m_Dims = nDim;
m_nWLs = nWLs;
m_orient_q = orientQuant;
m_patch_size = patchSize;
m_grad_atype = iGradAssignType;
// cast into opencv Mat type as float
m_wl_thresh = Mat( dim0, dim1, CV_32F, reinterpret_cast<float *>(const_cast<unsigned int *>(thresh)) );
m_wl_alpha = Mat( dim0, dim1, CV_32F, reinterpret_cast<float *>(const_cast<unsigned int *>(alpha )) );
// cast into opencv Mat type as integer
m_wl_orient = Mat( dim0, dim1, CV_32S, const_cast<int *>(orient) );
m_wl_x_min = Mat( dim0, dim1, CV_32S, const_cast<int *>(x_min ) );
m_wl_x_max = Mat( dim0, dim1, CV_32S, const_cast<int *>(x_max ) );
m_wl_y_min = Mat( dim0, dim1, CV_32S, const_cast<int *>(y_min ) );
m_wl_y_max = Mat( dim0, dim1, CV_32S, const_cast<int *>(y_max ) );
// no beta
if ( beta == NULL ) return;
if ( m_desc_type == LBGM )
m_wl_beta = Mat( dim1, nDim, CV_32F, reinterpret_cast<float *>(const_cast<unsigned int *>(beta)) );
else
m_wl_beta = Mat( dim0, dim1, CV_32F, reinterpret_cast<float *>(const_cast<unsigned int *>(beta)) );
}
// constructor
BoostDesc_Impl::BoostDesc_Impl( int _desc, bool _use_scale_orientation, float _scale_factor )
: m_desc_type( _desc ), m_scale_factor( _scale_factor ),
m_use_scale_orientation( _use_scale_orientation )
{
// desc type
switch ( m_desc_type )
{
case BGM:
{
#include "boostdesc_bgm.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, NULL );
}
break;
case BGM_HARD:
{
#include "boostdesc_bgm_hd.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, NULL );
}
break;
case BGM_BILINEAR:
{
#include "boostdesc_bgm_bi.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, NULL );
}
break;
case LBGM:
{
#include "boostdesc_lbgm.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, beta );
}
break;
case BINBOOST_64:
{
#include "boostdesc_binboost_064.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, beta );
}
break;
case BINBOOST_128:
{
#include "boostdesc_binboost_128.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, beta );
}
break;
case BINBOOST_256:
{
#include "boostdesc_binboost_256.i"
ini_params( orientQuant, patchSize,
iGradAssignType,
nDim, nWLs, thresh, orient,
x_min, x_max, y_min, y_max,
alpha, beta );
}
break;
default:
CV_Error( Error::StsInternal, "Unknown Descriptor Type." );
}
}
// destructor
BoostDesc_Impl::~BoostDesc_Impl()
{
}
Ptr<BoostDesc> BoostDesc::create( int desc, bool use_scale_orientation, float scale_factor )
{
return makePtr<BoostDesc_Impl>( desc, use_scale_orientation, scale_factor );
}
} // END NAMESPACE XFEATURES2D
} // END NAMESPACE CV