Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

345 lines
11 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright Amir Hassan (kallaballa) <amir@viel-zu.org>
#include <opencv2/v4d/v4d.hpp>
//adapted from https://gitlab.com/wikibooks-opengl/modern-tutorials/-/blob/master/tut05_cube/cube.cpp
#include <cstdio>
#include <cstdlib>
#include <cmath>
constexpr long unsigned int WIDTH = 1920;
constexpr long unsigned int HEIGHT = 1080;
constexpr double FPS = 60;
constexpr bool OFFSCREEN = false;
constexpr const char* OUTPUT_FILENAME = "cube-demo.mkv";
const unsigned long DIAG = hypot(double(WIDTH), double(HEIGHT));
const int GLOW_KERNEL_SIZE = std::max(int(DIAG / 138 % 2 == 0 ? DIAG / 138 + 1 : DIAG / 138),
1);
using std::cerr;
using std::endl;
cv::Ptr<cv::viz::V4D> v4d = cv::viz::V4D::make(cv::Size(WIDTH, HEIGHT),
cv::Size(WIDTH, HEIGHT), OFFSCREEN, "Cube Demo");
GLuint vbo_cube_vertices, vbo_cube_colors;
GLuint ibo_cube_elements;
GLuint program;
GLint attribute_coord3d, attribute_v_color;
GLint uniform_mvp;
GLuint init_shader(const char* vShader, const char* fShader, const char* outputAttributeName) {
struct Shader {
GLenum type;
const char* source;
} shaders[2] = { { GL_VERTEX_SHADER, vShader }, { GL_FRAGMENT_SHADER, fShader } };
GLuint program = glCreateProgram();
for (int i = 0; i < 2; ++i) {
Shader& s = shaders[i];
GLuint shader = glCreateShader(s.type);
glShaderSource(shader, 1, (const GLchar**) &s.source, NULL);
glCompileShader(shader);
GLint compiled;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
std::cerr << " failed to compile:" << std::endl;
GLint logSize;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logSize);
char* logMsg = new char[logSize];
glGetShaderInfoLog(shader, logSize, NULL, logMsg);
std::cerr << logMsg << std::endl;
delete[] logMsg;
exit (EXIT_FAILURE);
}
glAttachShader(program, shader);
}
#ifndef OPENCV_V4D_ES_VERSION
/* Link output */
glBindFragDataLocation(program, 0, outputAttributeName);
#endif
/* link and error check */
glLinkProgram(program);
GLint linked;
glGetProgramiv(program, GL_LINK_STATUS, &linked);
if (!linked) {
std::cerr << "Shader program failed to link" << std::endl;
GLint logSize;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &logSize);
char* logMsg = new char[logSize];
glGetProgramInfoLog(program, logSize, NULL, logMsg);
std::cerr << logMsg << std::endl;
delete[] logMsg;
exit (EXIT_FAILURE);
}
/* use program object */
glUseProgram(program);
return program;
}
//mandelbrot shader code adapted from my own project: https://github.com/kallaballa/FractalDive#after
void load_shader() {
#ifndef OPENCV_V4D_ES_VERSION
const string shaderVersion = "330";
#else
const string shaderVersion = "300 es";
#endif
const string vert =
" #version " + shaderVersion
+ R"(
precision lowp float;
layout(location = 0) in vec3 coord3d;
layout(location = 1) in vec3 v_color;
uniform mat4 mvp;
out vec3 f_color;
void main(void) {
gl_Position = mvp * vec4(coord3d, 1.0);
f_color = v_color;
}
)";
const string frag =
" #version " + shaderVersion
+ R"(
precision lowp float;
in vec3 f_color;
out vec4 fragColor;
void main(void) {
fragColor = vec4(f_color.r, f_color.g, f_color.b, 1.0);
}
)";
cerr << "##### Cube Vertex Shader #####" << endl;
cerr << vert << endl;
cerr << "##### Cube Fragment Shader #####" << endl;
cerr << frag << endl;
program = init_shader(vert.c_str(), frag.c_str(), "fragColor");
}
int init_resources() {
GLfloat cube_vertices[] = {
// front
-1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0,
// back
-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, };
glGenBuffers(1, &vbo_cube_vertices);
glBindBuffer(GL_ARRAY_BUFFER, vbo_cube_vertices);
glBufferData(GL_ARRAY_BUFFER, sizeof(cube_vertices), cube_vertices, GL_STATIC_DRAW);
GLfloat cube_colors[] = {
// front colors
1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0,
// back colors
1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, };
glGenBuffers(1, &vbo_cube_colors);
glBindBuffer(GL_ARRAY_BUFFER, vbo_cube_colors);
glBufferData(GL_ARRAY_BUFFER, sizeof(cube_colors), cube_colors, GL_STATIC_DRAW);
GLushort cube_elements[] = {
// front
0, 1, 2, 2, 3, 0,
// top
1, 5, 6, 6, 2, 1,
// back
7, 6, 5, 5, 4, 7,
// bottom
4, 0, 3, 3, 7, 4,
// left
4, 5, 1, 1, 0, 4,
// right
3, 2, 6, 6, 7, 3, };
glGenBuffers(1, &ibo_cube_elements);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo_cube_elements);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(cube_elements), cube_elements, GL_STATIC_DRAW);
GLint link_ok = GL_FALSE;
GLuint vs, fs;
load_shader();
const char* attribute_name;
attribute_name = "coord3d";
attribute_coord3d = glGetAttribLocation(program, attribute_name);
if (attribute_coord3d == -1) {
fprintf(stderr, "Could not bind attribute %s\n", attribute_name);
return 0;
}
attribute_name = "v_color";
attribute_v_color = glGetAttribLocation(program, attribute_name);
if (attribute_v_color == -1) {
fprintf(stderr, "Could not bind attribute %s\n", attribute_name);
return 0;
}
const char* uniform_name;
uniform_name = "mvp";
uniform_mvp = glGetUniformLocation(program, uniform_name);
if (uniform_mvp == -1) {
fprintf(stderr, "Could not bind uniform %s\n", uniform_name);
return 0;
}
return 1;
}
void init_scene(const cv::Size& sz) {
init_resources();
glEnable (GL_BLEND);
glEnable (GL_DEPTH_TEST);
// glDepthFunc(GL_LESS);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
void render_scene(const cv::Size& sz) {
glClearColor(1.0, 1.0, 1.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(program);
float angle = fmod(double(cv::getTickCount()) / double(cv::getTickFrequency()), 2 * M_PI);
float scale = 0.25;
cv::Matx44f rotXMat(
1.0, 0.0, 0.0, 0.0,
0.0, cos(angle), -sin(angle), 0.0,
0.0, sin(angle), cos(angle), 0.0,
0.0, 0.0, 0.0, 1.0
);
cv::Matx44f rotYMat(
cos(angle), 0.0, sin(angle), 0.0,
0.0, 1.0, 0.0, 0.0,
-sin(angle), 0.0, cos(angle), 0.0,
0.0, 0.0, 0.0, 1.0
);
cv::Matx44f rotZMat(
cos(angle), -sin(angle), 0.0, 0.0,
sin(angle), cos(angle), 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
);
cv::Matx44f scaleMat(
scale, 0.0, 0.0, 0.0,
0.0, scale, 0.0, 0.0,
0.0, 0.0, scale, 0.0,
0.0, 0.0, 0.0, 1.0
);
cv::Matx44f trans = scaleMat * rotXMat * rotYMat * rotZMat;
glUniformMatrix4fv(uniform_mvp, 1, GL_FALSE, trans.val);
glEnableVertexAttribArray(attribute_coord3d);
// Describe our vertices array to OpenGL (it can't guess its format automatically)
glBindBuffer(GL_ARRAY_BUFFER, vbo_cube_vertices);
glVertexAttribPointer(attribute_coord3d, // attribute
3, // number of elements per vertex, here (x,y,z)
GL_FLOAT, // the type of each element
GL_FALSE, // take our values as-is
0, // no extra data between each position
0 // offset of first element
);
glEnableVertexAttribArray(attribute_v_color);
glBindBuffer(GL_ARRAY_BUFFER, vbo_cube_colors);
glVertexAttribPointer(attribute_v_color, // attribute
3, // number of elements per vertex, here (R,G,B)
GL_FLOAT, // the type of each element
GL_FALSE, // take our values as-is
0, // no extra data between each position
0 // offset of first element
);
/* Push each element in buffer_vertices to the vertex shader */
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo_cube_elements);
int size;
glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &size);
glDrawElements(GL_TRIANGLES, size / sizeof(GLushort), GL_UNSIGNED_SHORT, 0);
glDisableVertexAttribArray(attribute_coord3d);
glDisableVertexAttribArray(attribute_v_color);
}
void glow_effect(const cv::UMat& src, cv::UMat& dst, const int ksize) {
static cv::UMat resize;
static cv::UMat blur;
static cv::UMat dst16;
cv::bitwise_not(src, dst);
//Resize for some extra performance
cv::resize(dst, resize, cv::Size(), 0.5, 0.5);
//Cheap blur
cv::boxFilter(resize, resize, -1, cv::Size(ksize, ksize), cv::Point(-1, -1), true,
cv::BORDER_REPLICATE);
//Back to original size
cv::resize(resize, blur, src.size());
//Multiply the src image with a blurred version of itself
cv::multiply(dst, blur, dst16, 1, CV_16U);
//Normalize and convert back to CV_8U
cv::divide(dst16, cv::Scalar::all(255.0), dst, 1, CV_8U);
cv::bitwise_not(dst, dst);
}
bool iteration() {
using namespace cv::viz;
//Render using OpenGL
v4d->gl(render_scene);
//If we have OpenCL and maybe even CL-GL sharing then this is faster than the glow shader. Without OpenCL this is very slow.
#ifndef __EMSCRIPTEN__
//Aquire the frame buffer for use by OpenCL
v4d->fb([&](cv::UMat& frameBuffer) {
//Glow effect (OpenCL)
glow_effect(frameBuffer, frameBuffer, GLOW_KERNEL_SIZE);
});
#endif
v4d->write();
updateFps(v4d, true);
//If onscreen rendering is enabled it displays the framebuffer in the native window. Returns false if the window was closed.
if (!v4d->display())
return false;
return true;
}
int main(int argc, char** argv) {
using namespace cv::viz;
if (!v4d->isOffscreen())
v4d->setVisible(true);
printSystemInfo();
#ifndef __EMSCRIPTEN__
Sink sink = makeWriterSink(OUTPUT_FILENAME, cv::VideoWriter::fourcc('V', 'P', '9', '0'), FPS,
cv::Size(WIDTH, HEIGHT));
v4d->setSink(sink);
#endif
v4d->gl(init_scene);
v4d->run(iteration);
return 0;
}