You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
466 lines
18 KiB
466 lines
18 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// Copyright Amir Hassan (kallaballa) <amir@viel-zu.org> |
|
|
|
#include <opencv2/v4d/v4d.hpp> |
|
|
|
#include <opencv2/features2d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/optflow.hpp> |
|
#include <opencv2/core/ocl.hpp> |
|
|
|
#include <cmath> |
|
#include <vector> |
|
#include <set> |
|
#include <string> |
|
#include <random> |
|
#include <tuple> |
|
#include <array> |
|
#include <utility> |
|
|
|
using std::cerr; |
|
using std::endl; |
|
using std::vector; |
|
using std::string; |
|
|
|
/* Demo parameters */ |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
constexpr long unsigned int WIDTH = 1280; |
|
constexpr long unsigned int HEIGHT = 720; |
|
#else |
|
constexpr long unsigned int WIDTH = 960; |
|
constexpr long unsigned int HEIGHT = 960; |
|
#endif |
|
const unsigned long DIAG = hypot(double(WIDTH), double(HEIGHT)); |
|
#ifndef __EMSCRIPTEN__ |
|
constexpr const char* OUTPUT_FILENAME = "optflow-demo.mkv"; |
|
#endif |
|
constexpr bool OFFSCREEN = false; |
|
|
|
//How the background will be visualized |
|
enum BackgroundModes { |
|
GREY, |
|
COLOR, |
|
VALUE, |
|
BLACK |
|
}; |
|
|
|
//Post-processing modes for the foreground |
|
enum PostProcModes { |
|
GLOW, |
|
BLOOM, |
|
DISABLED |
|
}; |
|
|
|
using namespace cv::v4d; |
|
|
|
class OptflowPlan : public Plan { |
|
struct Params { |
|
// Generate the foreground at this scale. |
|
float fgScale_ = 0.5f; |
|
// On every frame the foreground loses on brightness. Specifies the loss in percent. |
|
float fgLoss_ = 1; |
|
//Convert the background to greyscale |
|
BackgroundModes backgroundMode_ = GREY; |
|
// Peak thresholds for the scene change detection. Lowering them makes the detection more sensitive but |
|
// the default should be fine. |
|
float sceneChangeThresh_ = 0.29f; |
|
float sceneChangeThreshDiff_ = 0.1f; |
|
// The theoretical maximum number of points to track which is scaled by the density of detected points |
|
// and therefor is usually much smaller. |
|
int maxPoints_ = 300000; |
|
// How many of the tracked points to lose intentionally, in percent. |
|
float pointLoss_ = 20; |
|
// The theoretical maximum size of the drawing stroke which is scaled by the area of the convex hull |
|
// of tracked points and therefor is usually much smaller. |
|
int maxStroke_ = 6; |
|
// Blue, green, red and alpha. All from 0.0f to 1.0f |
|
cv::Scalar_<float> effectColor_ = {0.4f, 0.75f, 1.0f, 0.15f}; |
|
//display on-screen FPS |
|
bool showFps_ = true; |
|
//Stretch frame buffer to window size |
|
bool stretch_ = false; |
|
//The post processing mode |
|
#ifndef __EMSCRIPTEN__ |
|
PostProcModes postProcMode_ = GLOW; |
|
#else |
|
PostProcModes postProcMode_ = DISABLED; |
|
#endif |
|
// Intensity of glow or bloom defined by kernel size. The default scales with the image diagonal. |
|
int glowKernelSize_ = std::max(int(DIAG / 150 % 2 == 0 ? DIAG / 150 + 1 : DIAG / 150), 1); |
|
//The lightness selection threshold |
|
int bloomThresh_ = 210; |
|
//The intensity of the bloom filter |
|
float bloomGain_ = 3; |
|
} params_; |
|
|
|
struct Cache { |
|
cv::Mat element_ = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3), cv::Point(1, 1)); |
|
|
|
vector<cv::KeyPoint> tmpKeyPoints_; |
|
|
|
float last_movement_ = 0; |
|
|
|
vector<cv::Point2f> hull_, prevPoints_, nextPoints_, newPoints_; |
|
vector<cv::Point2f> upPrevPoints_, upNextPoints_; |
|
std::vector<uchar> status_; |
|
std::vector<float> err_; |
|
std::random_device rd_; |
|
std::mt19937 rng_; |
|
|
|
cv::UMat bgr_; |
|
cv::UMat hls_; |
|
cv::UMat ls16_; |
|
cv::UMat ls_; |
|
cv::UMat bblur_; |
|
std::vector<cv::UMat> hlsChannels_; |
|
|
|
cv::UMat high_; |
|
cv::UMat low_; |
|
cv::UMat gblur_; |
|
cv::UMat dst16_; |
|
|
|
cv::UMat tmp_; |
|
cv::UMat post_; |
|
cv::UMat backgroundGrey_; |
|
vector<cv::UMat> channels_; |
|
} cache_; |
|
|
|
//BGRA |
|
cv::UMat background_, down_; |
|
//BGR |
|
cv::UMat result_; |
|
cv::UMat foreground_ = cv::UMat(cv::Size(WIDTH, HEIGHT), CV_8UC4, cv::Scalar::all(0)); |
|
//GREY |
|
cv::UMat downPrevGrey_, downNextGrey_, downMotionMaskGrey_; |
|
vector<cv::Point2f> detectedPoints_; |
|
|
|
cv::Ptr<cv::BackgroundSubtractor> bg_subtractor_ = cv::createBackgroundSubtractorMOG2(100, 16.0, false); |
|
cv::Ptr<cv::FastFeatureDetector> detector_ = cv::FastFeatureDetector::create(1, false); |
|
public: |
|
virtual ~OptflowPlan() override {}; |
|
//Uses background subtraction to generate a "motion mask" |
|
static void prepare_motion_mask(const cv::UMat& srcGrey, cv::UMat& motionMaskGrey, cv::Ptr<cv::BackgroundSubtractor> bg_subtractor, Cache& cache) { |
|
bg_subtractor->apply(srcGrey, motionMaskGrey); |
|
//Surpress speckles |
|
cv::morphologyEx(motionMaskGrey, motionMaskGrey, cv::MORPH_OPEN, cache.element_, cv::Point(cache.element_.cols >> 1, cache.element_.rows >> 1), 2, cv::BORDER_CONSTANT, cv::morphologyDefaultBorderValue()); |
|
} |
|
|
|
//Detect points to track |
|
static void detect_points(const cv::UMat& srcMotionMaskGrey, vector<cv::Point2f>& points, cv::Ptr<cv::FastFeatureDetector> detector, Cache& cache) { |
|
detector->detect(srcMotionMaskGrey, cache.tmpKeyPoints_); |
|
|
|
points.clear(); |
|
for (const auto &kp : cache.tmpKeyPoints_) { |
|
points.push_back(kp.pt); |
|
} |
|
} |
|
|
|
//Detect extrem changes in scene content and report it |
|
static bool detect_scene_change(const cv::UMat& srcMotionMaskGrey, const Params& params, Cache& cache) { |
|
float movement = cv::countNonZero(srcMotionMaskGrey) / float(srcMotionMaskGrey.cols * srcMotionMaskGrey.rows); |
|
float relation = movement > 0 && cache.last_movement_ > 0 ? std::max(movement, cache.last_movement_) / std::min(movement, cache.last_movement_) : 0; |
|
float relM = relation * log10(1.0f + (movement * 9.0)); |
|
float relLM = relation * log10(1.0f + (cache.last_movement_ * 9.0)); |
|
|
|
bool result = !((movement > 0 && cache.last_movement_ > 0 && relation > 0) |
|
&& (relM < params.sceneChangeThresh_ && relLM < params.sceneChangeThresh_ && fabs(relM - relLM) < params.sceneChangeThreshDiff_)); |
|
cache.last_movement_ = (cache.last_movement_ + movement) / 2.0f; |
|
return result; |
|
} |
|
|
|
//Visualize the sparse optical flow |
|
static void visualize_sparse_optical_flow(const cv::UMat &prevGrey, const cv::UMat &nextGrey, const vector<cv::Point2f> &detectedPoints, const Params& params, Cache& cache) { |
|
//less then 5 points is a degenerate case (e.g. the corners of a video frame) |
|
if (detectedPoints.size() > 4) { |
|
cv::convexHull(detectedPoints, cache.hull_); |
|
float area = cv::contourArea(cache.hull_); |
|
//make sure the area of the point cloud is positive |
|
if (area > 0) { |
|
float density = (detectedPoints.size() / area); |
|
//stroke size is biased by the area of the point cloud |
|
float strokeSize = params.maxStroke_ * pow(area / (nextGrey.cols * nextGrey.rows), 0.33f); |
|
//max points is biased by the densitiy of the point cloud |
|
size_t currentMaxPoints = ceil(density * params.maxPoints_); |
|
|
|
//lose a number of random points specified by pointLossPercent |
|
std::shuffle(cache.prevPoints_.begin(), cache.prevPoints_.end(), cache.rng_); |
|
cache.prevPoints_.resize(ceil(cache.prevPoints_.size() * (1.0f - (params.pointLoss_ / 100.0f)))); |
|
|
|
//calculate how many newly detected points to add |
|
size_t copyn = std::min(detectedPoints.size(), (size_t(std::ceil(currentMaxPoints)) - cache.prevPoints_.size())); |
|
if (cache.prevPoints_.size() < currentMaxPoints) { |
|
std::copy(detectedPoints.begin(), detectedPoints.begin() + copyn, std::back_inserter(cache.prevPoints_)); |
|
} |
|
|
|
//calculate the sparse optical flow |
|
cv::calcOpticalFlowPyrLK(prevGrey, nextGrey, cache.prevPoints_, cache.nextPoints_, cache.status_, cache.err_); |
|
cache.newPoints_.clear(); |
|
if (cache.prevPoints_.size() > 1 && cache.nextPoints_.size() > 1) { |
|
//scale the points to original size |
|
cache.upNextPoints_.clear(); |
|
cache.upPrevPoints_.clear(); |
|
for (cv::Point2f pt : cache.prevPoints_) { |
|
cache.upPrevPoints_.push_back(pt /= params.fgScale_); |
|
} |
|
|
|
for (cv::Point2f pt : cache.nextPoints_) { |
|
cache.upNextPoints_.push_back(pt /= params.fgScale_); |
|
} |
|
|
|
using namespace cv::v4d::nvg; |
|
//start drawing |
|
beginPath(); |
|
strokeWidth(strokeSize); |
|
strokeColor(params.effectColor_ * 255.0); |
|
|
|
for (size_t i = 0; i < cache.prevPoints_.size(); i++) { |
|
if (cache.status_[i] == 1 //point was found in prev and new set |
|
&& cache.err_[i] < (1.0 / density) //with a higher density be more sensitive to the feature error |
|
&& cache.upNextPoints_[i].y >= 0 && cache.upNextPoints_[i].x >= 0 //check bounds |
|
&& cache.upNextPoints_[i].y < nextGrey.rows / params.fgScale_ && cache.upNextPoints_[i].x < nextGrey.cols / params.fgScale_ //check bounds |
|
) { |
|
float len = hypot(fabs(cache.upPrevPoints_[i].x - cache.upNextPoints_[i].x), fabs(cache.upPrevPoints_[i].y - cache.upNextPoints_[i].y)); |
|
//upper and lower bound of the flow vector lengthss |
|
if (len > 0 && len < sqrt(area)) { |
|
//collect new points |
|
cache.newPoints_.push_back(cache.nextPoints_[i]); |
|
//the actual drawing operations |
|
moveTo(cache.upNextPoints_[i].x, cache.upNextPoints_[i].y); |
|
lineTo(cache.upPrevPoints_[i].x, cache.upPrevPoints_[i].y); |
|
} |
|
} |
|
} |
|
//end drawing |
|
stroke(); |
|
} |
|
cache.prevPoints_ = cache.newPoints_; |
|
} |
|
} |
|
} |
|
|
|
//Bloom post-processing effect |
|
static void bloom(const cv::UMat& src, cv::UMat &dst, Cache& cache, int ksize = 3, int threshValue = 235, float gain = 4) { |
|
//remove alpha channel |
|
cv::cvtColor(src, cache.bgr_, cv::COLOR_BGRA2RGB); |
|
//convert to hls |
|
cv::cvtColor(cache.bgr_, cache.hls_, cv::COLOR_BGR2HLS); |
|
//split channels |
|
cv::split(cache.hls_, cache.hlsChannels_); |
|
//invert lightness |
|
cv::bitwise_not(cache.hlsChannels_[2], cache.hlsChannels_[2]); |
|
//multiply lightness and saturation |
|
cv::multiply(cache.hlsChannels_[1], cache.hlsChannels_[2], cache.ls16_, 1, CV_16U); |
|
//normalize |
|
cv::divide(cache.ls16_, cv::Scalar(255.0), cache.ls_, 1, CV_8U); |
|
//binary threhold according to threshValue |
|
cv::threshold(cache.ls_, cache.bblur_, threshValue, 255, cv::THRESH_BINARY); |
|
//blur |
|
cv::boxFilter(cache.bblur_, cache.bblur_, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE); |
|
//convert to BGRA |
|
cv::cvtColor(cache.bblur_, cache.bblur_, cv::COLOR_GRAY2BGRA); |
|
//add src and the blurred L-S-product according to gain |
|
addWeighted(src, 1.0, cache.bblur_, gain, 0, dst); |
|
} |
|
|
|
//Glow post-processing effect |
|
static void glow_effect(const cv::UMat &src, cv::UMat &dst, const int ksize, Cache& cache) { |
|
cv::bitwise_not(src, dst); |
|
|
|
//Resize for some extra performance |
|
cv::resize(dst, cache.low_, cv::Size(), 0.5, 0.5); |
|
//Cheap blur |
|
cv::boxFilter(cache.low_, cache.gblur_, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE); |
|
//Back to original size |
|
cv::resize(cache.gblur_, cache.high_, src.size()); |
|
|
|
//Multiply the src image with a blurred version of itself |
|
cv::multiply(dst, cache.high_, cache.dst16_, 1, CV_16U); |
|
//Normalize and convert back to CV_8U |
|
cv::divide(cache.dst16_, cv::Scalar::all(255.0), dst, 1, CV_8U); |
|
|
|
cv::bitwise_not(dst, dst); |
|
} |
|
|
|
//Compose the different layers into the final image |
|
static void composite_layers(cv::UMat& background, cv::UMat& foreground, const cv::UMat& frameBuffer, cv::UMat& dst, const Params& params, Cache& cache) { |
|
//Lose a bit of foreground brightness based on fgLossPercent |
|
cv::subtract(foreground, cv::Scalar::all(255.0f * (params.fgLoss_ / 100.0f)), foreground); |
|
//Add foreground an the current framebuffer into foregound |
|
cv::add(foreground, frameBuffer, foreground); |
|
|
|
//Dependin on bgMode prepare the background in different ways |
|
switch (params.backgroundMode_) { |
|
case GREY: |
|
cv::cvtColor(background, cache.backgroundGrey_, cv::COLOR_BGRA2GRAY); |
|
cv::cvtColor(cache.backgroundGrey_, background, cv::COLOR_GRAY2BGRA); |
|
break; |
|
case VALUE: |
|
cv::cvtColor(background, cache.tmp_, cv::COLOR_BGRA2BGR); |
|
cv::cvtColor(cache.tmp_, cache.tmp_, cv::COLOR_BGR2HSV); |
|
split(cache.tmp_, cache.channels_); |
|
cv::cvtColor(cache.channels_[2], background, cv::COLOR_GRAY2BGRA); |
|
break; |
|
case COLOR: |
|
break; |
|
case BLACK: |
|
background = cv::Scalar::all(0); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
//Depending on ppMode perform post-processing |
|
switch (params.postProcMode_) { |
|
case GLOW: |
|
glow_effect(foreground, cache.post_, params.glowKernelSize_, cache); |
|
break; |
|
case BLOOM: |
|
bloom(foreground, cache.post_, cache, params.glowKernelSize_, params.bloomThresh_, params.bloomGain_); |
|
break; |
|
case DISABLED: |
|
foreground.copyTo(cache.post_); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
//Add background and post-processed foreground into dst |
|
cv::add(background, cache.post_, dst); |
|
} |
|
|
|
virtual void gui(cv::Ptr<V4D> window) override { |
|
window->imgui([](cv::Ptr<V4D> win, ImGuiContext* ctx, Params& params){ |
|
using namespace ImGui; |
|
SetCurrentContext(ctx); |
|
|
|
Begin("Effects"); |
|
Text("Foreground"); |
|
SliderFloat("Scale", ¶ms.fgScale_, 0.1f, 4.0f); |
|
SliderFloat("Loss", ¶ms.fgLoss_, 0.1f, 99.9f); |
|
Text("Background"); |
|
thread_local const char* bgm_items[4] = {"Grey", "Color", "Value", "Black"}; |
|
thread_local int* bgm = (int*)¶ms.backgroundMode_; |
|
ListBox("Mode", bgm, bgm_items, 4, 4); |
|
Text("Points"); |
|
SliderInt("Max. Points", ¶ms.maxPoints_, 10, 1000000); |
|
SliderFloat("Point Loss", ¶ms.pointLoss_, 0.0f, 100.0f); |
|
Text("Optical flow"); |
|
SliderInt("Max. Stroke Size", ¶ms.maxStroke_, 1, 100); |
|
ColorPicker4("Color", params.effectColor_.val); |
|
End(); |
|
|
|
Begin("Post Processing"); |
|
thread_local const char* ppm_items[3] = {"Glow", "Bloom", "None"}; |
|
thread_local int* ppm = (int*)¶ms.postProcMode_; |
|
ListBox("Effect",ppm, ppm_items, 3, 3); |
|
SliderInt("Kernel Size",¶ms.glowKernelSize_, 1, 63); |
|
SliderFloat("Gain", ¶ms.bloomGain_, 0.1f, 20.0f); |
|
End(); |
|
|
|
Begin("Settings"); |
|
Text("Scene Change Detection"); |
|
SliderFloat("Threshold", ¶ms.sceneChangeThresh_, 0.1f, 1.0f); |
|
SliderFloat("Threshold Diff", ¶ms.sceneChangeThreshDiff_, 0.1f, 1.0f); |
|
End(); |
|
|
|
Begin("Window"); |
|
if(Checkbox("Show FPS", ¶ms.showFps_)) { |
|
win->setShowFPS(params.showFps_); |
|
} |
|
if(Checkbox("Stretch", ¶ms.stretch_)) { |
|
win->setStretching(params.stretch_); |
|
} |
|
#ifndef __EMSCRIPTEN__ |
|
if(Button("Fullscreen")) { |
|
win->setFullscreen(!win->isFullscreen()); |
|
}; |
|
|
|
if(Button("Offscreen")) { |
|
win->setVisible(!win->isVisible()); |
|
}; |
|
#endif |
|
End(); |
|
}, params_); |
|
} |
|
|
|
virtual void setup(cv::Ptr<V4D> window) override { |
|
cache_.rng_ = std::mt19937(cache_.rd_()); |
|
window->setStretching(params_.stretch_); |
|
params_.effectColor_[3] /= pow(window->workers() + 1.0, 0.33); |
|
} |
|
|
|
virtual void infer(cv::Ptr<V4D> window) override { |
|
window->capture(); |
|
|
|
window->fb([](const cv::UMat& framebuffer, cv::UMat& d, cv::UMat& b, const Params& params) { |
|
//resize to foreground scale |
|
cv::resize(framebuffer, d, cv::Size(framebuffer.size().width * params.fgScale_, framebuffer.size().height * params.fgScale_)); |
|
//save video background |
|
framebuffer.copyTo(b); |
|
}, down_, background_, params_); |
|
|
|
window->parallel([](const cv::UMat& d, cv::UMat& dng, cv::UMat& dmmg, std::vector<cv::Point2f>& dp, cv::Ptr<cv::BackgroundSubtractor>& bg_subtractor, cv::Ptr<cv::FastFeatureDetector>& detector, Cache& cache){ |
|
cv::cvtColor(d, dng, cv::COLOR_RGBA2GRAY); |
|
//Subtract the background to create a motion mask |
|
prepare_motion_mask(dng, dmmg, bg_subtractor, cache); |
|
//Detect trackable points in the motion mask |
|
detect_points(dmmg, dp, detector, cache); |
|
}, down_, downNextGrey_, downMotionMaskGrey_, detectedPoints_, bg_subtractor_, detector_, cache_); |
|
|
|
window->nvg([](const cv::UMat& dmmg, const cv::UMat& dpg, const cv::UMat& dng, const std::vector<cv::Point2f>& dp, const Params& params, Cache& cache) { |
|
cv::v4d::nvg::clear(); |
|
if (!dpg.empty()) { |
|
//We don't want the algorithm to get out of hand when there is a scene change, so we suppress it when we detect one. |
|
if (!detect_scene_change(dmmg, params, cache)) { |
|
//Visualize the sparse optical flow using nanovg |
|
visualize_sparse_optical_flow(dpg, dng, dp, params, cache); |
|
} |
|
} |
|
}, downMotionMaskGrey_, downPrevGrey_, downNextGrey_, detectedPoints_, params_, cache_); |
|
|
|
window->parallel([](cv::UMat& dpg, const cv::UMat& dng) { |
|
dpg = dng.clone(); |
|
}, downPrevGrey_, downNextGrey_); |
|
|
|
window->fb([](cv::UMat& framebuffer, cv::UMat& b, cv::UMat& f, const Params& params, Cache& cache) { |
|
//Put it all together (OpenCL) |
|
composite_layers(b, f, framebuffer, framebuffer, params, cache); |
|
}, background_, foreground_, params_, cache_); |
|
|
|
window->write(); |
|
} |
|
}; |
|
|
|
int main(int argc, char **argv) { |
|
CV_UNUSED(argc); |
|
CV_UNUSED(argv); |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
if (argc != 2) { |
|
std::cerr << "Usage: optflow <input-video-file>" << endl; |
|
exit(1); |
|
} |
|
#endif |
|
try { |
|
using namespace cv::v4d; |
|
cv::Ptr<V4D> window = V4D::make(WIDTH, HEIGHT, "Sparse Optical Flow Demo", ALL, OFFSCREEN); |
|
#ifndef __EMSCRIPTEN__ |
|
auto src = makeCaptureSource(window, argv[1]); |
|
window->setSource(src); |
|
auto sink = makeWriterSink(window, OUTPUT_FILENAME, src->fps(), cv::Size(WIDTH, HEIGHT)); |
|
window->setSink(sink); |
|
#else |
|
cv::Ptr<Source> src = makeCaptureSource(window); |
|
window->setSource(src); |
|
#endif |
|
|
|
window->run<OptflowPlan>(0); |
|
} catch (std::exception& ex) { |
|
cerr << ex.what() << endl; |
|
} |
|
return 0; |
|
}
|
|
|