You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
4.5 KiB
145 lines
4.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Itseez Inc or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "opencv2/datasets/or_mnist.hpp" |
|
#include "opencv2/datasets/util.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace datasets |
|
{ |
|
|
|
using namespace std; |
|
|
|
class OR_mnistImp : public OR_mnist |
|
{ |
|
public: |
|
OR_mnistImp() {} |
|
//OR_mnistImp(const string &path); |
|
virtual ~OR_mnistImp() {} |
|
|
|
virtual void load(const string &path); |
|
|
|
private: |
|
void loadDataset(const string &path); |
|
|
|
void loadDatasetPart(const string &imagesFile, const string &labelsFile, unsigned int num, vector< Ptr<Object> > &dataset_); |
|
}; |
|
|
|
/*OR_mnistImp::OR_mnistImp(const string &path) |
|
{ |
|
loadDataset(path); |
|
}*/ |
|
|
|
void OR_mnistImp::load(const string &path) |
|
{ |
|
loadDataset(path); |
|
} |
|
|
|
void OR_mnistImp::loadDatasetPart(const string &imagesFile, const string &labelsFile, unsigned int num, vector< Ptr<Object> > &dataset_) |
|
{ |
|
FILE *f = fopen(imagesFile.c_str(), "rb"); |
|
fseek(f, 16, SEEK_CUR); |
|
unsigned int imageSize = 28*28; |
|
char *images = new char[num*imageSize]; |
|
size_t res = fread(images, 1, num*imageSize, f); |
|
fclose(f); |
|
if (num*imageSize != res) |
|
{ |
|
delete[] images; |
|
return; |
|
} |
|
f = fopen(labelsFile.c_str(), "rb"); |
|
fseek(f, 8, SEEK_CUR); |
|
char *labels = new char[num]; |
|
res = fread(labels, 1, num, f); |
|
fclose(f); |
|
if (num != res) |
|
{ |
|
delete[] images; |
|
delete[] labels; |
|
return; |
|
} |
|
|
|
for (unsigned int i=0; i<num; ++i) |
|
{ |
|
Ptr<OR_mnistObj> curr(new OR_mnistObj); |
|
curr->label = labels[i]; |
|
|
|
curr->image = Mat(28, 28, CV_8U); |
|
unsigned int imageIdx = i*imageSize; |
|
for (int j=0; j<curr->image.rows; ++j) |
|
{ |
|
char *im = curr->image.ptr<char>(j); |
|
for (int k=0; k<curr->image.cols; ++k) |
|
{ |
|
im[k] = images[imageIdx + j*28 + k]; |
|
} |
|
} |
|
|
|
dataset_.push_back(curr); |
|
} |
|
delete[] images; |
|
delete[] labels; |
|
} |
|
|
|
void OR_mnistImp::loadDataset(const string &path) |
|
{ |
|
train.push_back(vector< Ptr<Object> >()); |
|
test.push_back(vector< Ptr<Object> >()); |
|
validation.push_back(vector< Ptr<Object> >()); |
|
|
|
string trainImagesFile(path + "train-images.idx3-ubyte"); |
|
string trainLabelsFile(path + "train-labels.idx1-ubyte"); |
|
loadDatasetPart(trainImagesFile, trainLabelsFile, 60000, train.back()); |
|
|
|
string testImagesFile(path + "t10k-images.idx3-ubyte"); |
|
string testLabelsFile(path + "t10k-labels.idx1-ubyte"); |
|
loadDatasetPart(testImagesFile, testLabelsFile, 10000, test.back()); |
|
} |
|
|
|
Ptr<OR_mnist> OR_mnist::create() |
|
{ |
|
return Ptr<OR_mnistImp>(new OR_mnistImp); |
|
} |
|
|
|
} |
|
}
|
|
|