Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

390 lines
12 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/line_descriptor.hpp>
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace cv;
static const char* keys =
{ "{@image_path1 | | Image path 1 }"
"{@image_path2 | | Image path 2 }" };
static void help()
{
std::cout << "\nThis example shows the functionalities of lines extraction " << "and descriptors computation furnished by BinaryDescriptor class\n"
<< "Please, run this sample using a command in the form\n" << "./example_line_descriptor_compute_descriptors <path_to_input_image 1>"
<< "<path_to_input_image 2>" << std::endl;
}
inline void writeMat( cv::Mat m, std::string name, int n )
{
std::stringstream ss;
std::string s;
ss << n;
ss >> s;
std::string fileNameConf = name + s;
cv::FileStorage fsConf( fileNameConf, cv::FileStorage::WRITE );
fsConf << "m" << m;
fsConf.release();
}
inline void loadMat( cv::Mat& m, std::string name )
{
cv::FileStorage fsConf( name, cv::FileStorage::READ );
fsConf["m"] >> m;
fsConf.release();
}
int binaryDist( const uchar * p_descriptor, const uchar * p_trained )
{
int count = 0;
for ( int i = 0; i < 32; i++ )
{
uchar a = p_descriptor[i];
uchar a1 = a & 1;
uchar a2 = a & 2;
uchar a4 = a & 4;
uchar a8 = a & 8;
uchar a16 = a & 16;
uchar a32 = a & 32;
uchar a64 = a & 64;
uchar a128 = a & 128;
uchar b = p_trained[i];
uchar b1 = b & 1;
uchar b2 = b & 2;
uchar b4 = b & 4;
uchar b8 = b & 8;
uchar b16 = b & 16;
uchar b32 = b & 32;
uchar b64 = b & 64;
uchar b128 = b & 128;
if( a1 == b1 )
count++;
if( a2 == b2 )
count++;
if( a4 == b4 )
count++;
if( a8 == b8 )
count++;
if( a16 == b16 )
count++;
if( a32 == b32 )
count++;
if( a64 == b64 )
count++;
if( a128 == b128 )
count++;
}
return count;
}
std::vector<DMatch> computeBruteForceSingleImages( Mat descriptor_query, Mat descriptor_db )
{
//BRUTE FORCE//
std::vector<DMatch> matches;
for ( int i = 0; i < descriptor_query.rows; i++ )
{
const uchar * p_descriptor = ( descriptor_query.ptr() ) + i * 32;
const uchar * p_trained = descriptor_db.ptr();
int min_dist = 0;
int min_index = -1;
for ( int k = 0; k < descriptor_db.rows; k++ )
{
int dist = binaryDist( p_descriptor, p_trained + ( k * 32 ) );
if( dist > min_dist )
{
min_dist = dist;
min_index = k;
}
}
DMatch m( i, min_index, (float) min_dist );
matches.push_back( m );
}
return matches;
}
void computeDescr( Mat sm_image, Mat img )
{
Mat query = sm_image.clone();
Mat db = img.clone();
Ptr<BinaryDescriptor> bd = BinaryDescriptor::createBinaryDescriptor();
/* compute lines */
std::vector<KeyLine> keylines1, keylines2;
bd->detect( query, keylines1 );
bd->detect( db, keylines2 );
/* compute descriptors */
cv::Mat descr1, descr2;
bd->compute( query, keylines1, descr1 );
bd->compute( db, keylines2, descr2 );
std::vector<cv::KeyPoint> keypoints_1;
std::vector<cv::KeyPoint> keypoints_2;
std::vector<std::pair<cv::KeyPoint, int> > v_pair_k1;
std::vector<std::pair<cv::KeyPoint, int> > v_pair_k2;
for ( int i = 0; i < keylines1.size(); i++ )
{
KeyLine l = keylines1[i];
keypoints_1.push_back( cv::KeyPoint( l.startPointX, l.startPointY, 8, l.angle ) );
v_pair_k1.push_back( std::make_pair( cv::KeyPoint( l.startPointX, l.startPointY, 8, l.angle ), i ) );
}
for ( int i = 0; i < keylines2.size(); i++ )
{
KeyLine l = keylines2[i];
keypoints_2.push_back( cv::KeyPoint( l.startPointX, l.startPointY, 8, l.angle ) );
v_pair_k2.push_back( std::make_pair( cv::KeyPoint( l.startPointX, l.startPointY, 8, l.angle ), i ) );
}
// vector<DMatch> matches = ImageFinderFLANN::computeBruteForceSingleImages(purged_descriptor_query, purged_descriptor_db );
std::vector<DMatch> matches = computeBruteForceSingleImages( descr1, descr2 );
Mat img_draw_matches, img_draw_matches_debug;
std::vector<DMatch> good_matches;
int thresh_good = 200;
for ( int i = 0; i < matches.size(); i++ )
{
if( matches[i].distance > thresh_good )
{
good_matches.push_back( matches[i] );
}
}
srand( (unsigned) time( 0 ) );
int lowest = 100, highest = 255;
int range = ( highest - lowest ) + 1;
unsigned int r, g, b;
//DISEGNO MATCHES
std::vector<cv::KeyPoint> fake_k1;
std::vector<cv::KeyPoint> fake_k2;
std::vector<cv::DMatch> fake_match;
drawMatches( sm_image, fake_k1, img, fake_k2, fake_match, img_draw_matches, Scalar::all( -1 ), Scalar::all( -1 ), Mat(),
DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
for ( int i = 0; i < keylines1.size(); i++ )
{
KeyLine line = keylines1[i];
cv::Point startP( line.sPointInOctaveX, line.sPointInOctaveY );
cv::Point endP( line.ePointInOctaveX, line.ePointInOctaveY );
cv::Point midP( ( startP.x + endP.x ) / 2, ( startP.y + endP.y ) / 2 );
//cv::putText(img_draw_matches, std::to_string(i), midP, 1, 1, Scalar(255,0,0), 1 );
cv::line( img_draw_matches, startP, endP, Scalar( 0, 0, 255 ) );
}
for ( int i = 0; i < keylines2.size(); i++ )
{
KeyLine line = keylines2[i];
cv::Point startP( line.sPointInOctaveX + sm_image.cols, line.sPointInOctaveY );
cv::Point endP( line.ePointInOctaveX + sm_image.cols, line.ePointInOctaveY );
cv::Point midP( ( startP.x + endP.x ) / 2, ( startP.y + endP.y ) / 2 );
//cv::putText(img_draw_matches, std::to_string(i), midP, 1, 1, Scalar(255,0,0), 1 );
cv::line( img_draw_matches, startP, endP, Scalar( 0, 0, 255 ) );
}
for ( int i = 0; i < good_matches.size(); i++ )
{
r = lowest + int( rand() % range );
g = lowest + int( rand() % range );
b = lowest + int( rand() % range );
std::pair<cv::KeyPoint, int> tmp_pair_1 = v_pair_k1[good_matches[i].queryIdx];
std::pair<cv::KeyPoint, int> tmp_pair_2 = v_pair_k2[good_matches[i].trainIdx];
cv::KeyPoint tmp_key_1 = tmp_pair_1.first;
cv::KeyPoint tmp_key_2 = tmp_pair_2.first;
KeyLine line1 = keylines1[tmp_pair_1.second];
cv::Point startP1( line1.sPointInOctaveX, line1.sPointInOctaveY );
cv::Point endP1( line1.ePointInOctaveX, line1.ePointInOctaveY );
cv::line( img_draw_matches, startP1, endP1, Scalar( r, g, b ), 2 );
KeyLine line2 = keylines2[tmp_pair_2.second];
cv::Point startP2( line2.sPointInOctaveX + sm_image.cols, line2.sPointInOctaveY );
cv::Point endP2( line2.ePointInOctaveX + sm_image.cols, line2.ePointInOctaveY );
cv::line( img_draw_matches, startP2, endP2, Scalar( r, g, b ), 2 );
cv::Point startP_connect( tmp_key_1.pt.x, tmp_key_1.pt.y );
cv::Point endP_connect( tmp_key_2.pt.x + sm_image.cols, tmp_key_2.pt.y );
cv::line( img_draw_matches, startP_connect, endP_connect, Scalar( r, g, b ), 2 );
}
imshow( "Imshow", img_draw_matches );
waitKey();
}
int main( int argc, char** argv )
{
/* get parameters from comand line */
CommandLineParser parser( argc, argv, keys );
String image_path1 = parser.get<String>( 0 );
String image_path2 = parser.get<String>( 1 );
if( image_path1.empty() || image_path2.empty() )
{
help();
return -1;
}
/* load image */
cv::Mat imageMat1 = imread( image_path1, 1 );
cv::Mat imageMat2 = imread( image_path2, 1 );
if( imageMat1.data == NULL || imageMat2.data == NULL )
{
std::cout << "Error, images could not be loaded. Please, check their path" << std::endl;
}
/* create binary masks */
cv::Mat mask1 = Mat::ones( imageMat1.size(), CV_8UC1 );
cv::Mat mask2 = Mat::ones( imageMat2.size(), CV_8UC1 );
/* create a pointer to a BinaryDescriptor object with default parameters */
Ptr<BinaryDescriptor> bd = BinaryDescriptor::createBinaryDescriptor();
/* compute lines */
std::vector<KeyLine> keylines1, keylines2;
bd->detect( imageMat2, keylines2, mask2 );
bd->detect( imageMat1, keylines1, mask1 );
//compute descriptors
/* cv::Mat descr1, descr2;*/
cv::Mat descr1, descr2;
bd->compute( imageMat1, keylines1, descr1 );
bd->compute( imageMat2, keylines2, descr2 );
//cv::Mat descr1, descr2;
//( *bd )( imageMat1, mask1, keylines1, descr1, true, false );
//( *bd )( imageMat2, mask2, keylines2, descr2, true, false );
/* create a BinaryDescriptorMatcher object */
Ptr<BinaryDescriptorMatcher> bdm = BinaryDescriptorMatcher::createBinaryDescriptorMatcher();
/* require match */
std::vector<DMatch> matches;
bdm->match( descr1, descr2, matches );
/* Mat newd1, newd2;
loadMat(newd1, "bd_descriptors0");
loadMat(newd2, "bd_descriptors1");*/
//matches = computeBruteForceSingleImages(newd1, newd2);
//matches = computeBruteForceSingleImages( descr1, descr2 );
std::vector<DMatch> good_matches;
int thresh_good = 25;
for(int i = 0; i<matches.size(); i++)
{
if(matches[i].distance < thresh_good)
{
good_matches.push_back(matches[i]);
}
}
/* plot matches */
cv::Mat outImg;
std::vector<char> mask( matches.size(), 1 );
drawLineMatches( imageMat1, keylines1, imageMat2, keylines2, good_matches , outImg, Scalar::all( -1 ), Scalar::all( -1 ), mask,
DrawLinesMatchesFlags::DEFAULT );
imshow( "Matches", outImg );
waitKey();
Ptr<LSDDetector> lsd = LSDDetector::createLSDDetector();
std::vector<KeyLine> klsd1, klsd2;
Mat lsd_descr1, lsd_descr2;
lsd->detect(imageMat1, klsd1, 2, 2, mask1);
lsd->detect(imageMat2, klsd2, 2, 2, mask2);
bd->compute( imageMat1, klsd1, lsd_descr1 );
bd->compute( imageMat2, klsd2, lsd_descr2 );
std::vector<DMatch> lsd_matches;
bdm->match( lsd_descr1, lsd_descr2, lsd_matches);
good_matches.clear();
for(int i = 0; i<lsd_matches.size(); i++)
{
if(lsd_matches[i].distance < thresh_good)
{
good_matches.push_back(lsd_matches[i]);
}
}
cv::Mat lsd_outImg;
std::vector<char> lsd_mask( matches.size(), 1 );
drawLineMatches( imageMat1, klsd1, imageMat2, klsd2, good_matches , lsd_outImg, Scalar::all( -1 ), Scalar::all( -1 ), lsd_mask,
DrawLinesMatchesFlags::DEFAULT );
imshow("LSD matches", lsd_outImg);
waitKey();
}