Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

878 lines
38 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDAIMGPROC_HPP
#define OPENCV_CUDAIMGPROC_HPP
#ifndef __cplusplus
# error cudaimgproc.hpp header must be compiled as C++
#endif
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
/**
@addtogroup cuda
@{
@defgroup cudaimgproc Image Processing
@{
@defgroup cudaimgproc_color Color space processing
@defgroup cudaimgproc_hist Histogram Calculation
@defgroup cudaimgproc_shape Structural Analysis and Shape Descriptors
@defgroup cudaimgproc_hough Hough Transform
@defgroup cudaimgproc_feature Feature Detection
@}
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudaimgproc
//! @{
/////////////////////////// Color Processing ///////////////////////////
//! @addtogroup cudaimgproc_color
//! @{
/** @brief Converts an image from one color space to another.
@param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
@param dst Destination image.
@param code Color space conversion code. For details, see cvtColor .
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
*/
CV_EXPORTS_W void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());
enum DemosaicTypes
{
//! Bayer Demosaicing (Malvar, He, and Cutler)
COLOR_BayerBG2BGR_MHT = 256,
COLOR_BayerGB2BGR_MHT = 257,
COLOR_BayerRG2BGR_MHT = 258,
COLOR_BayerGR2BGR_MHT = 259,
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
COLOR_BayerBG2GRAY_MHT = 260,
COLOR_BayerGB2GRAY_MHT = 261,
COLOR_BayerRG2GRAY_MHT = 262,
COLOR_BayerGR2GRAY_MHT = 263
};
/** @brief Converts an image from Bayer pattern to RGB or grayscale.
@param src Source image (8-bit or 16-bit single channel).
@param dst Destination image.
@param code Color space conversion code (see the description below).
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
The function can do the following transformations:
- Demosaicing using bilinear interpolation
> - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
> - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
- Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)
> - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
> COLOR_BayerGR2GRAY_MHT
> - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
> COLOR_BayerGR2BGR_MHT
@sa cvtColor
*/
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());
/** @brief Exchanges the color channels of an image in-place.
@param image Source image. Supports only CV_8UC4 type.
@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
array contains the number of the channel that is stored in the n-th channel of the output image.
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
@param stream Stream for the asynchronous version.
The methods support arbitrary permutations of the original channels, including replication.
*/
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
/** @brief Routines for correcting image color gamma.
@param src Source image (3- or 4-channel 8 bit).
@param dst Destination image.
@param forward true for forward gamma correction or false for inverse gamma correction.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());
enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
/** @brief Composites two images using alpha opacity values contained in each image.
@param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
@param img2 Second image. Must have the same size and the same type as img1 .
@param dst Destination image.
@param alpha_op Flag specifying the alpha-blending operation:
- **ALPHA_OVER**
- **ALPHA_IN**
- **ALPHA_OUT**
- **ALPHA_ATOP**
- **ALPHA_XOR**
- **ALPHA_PLUS**
- **ALPHA_OVER_PREMUL**
- **ALPHA_IN_PREMUL**
- **ALPHA_OUT_PREMUL**
- **ALPHA_ATOP_PREMUL**
- **ALPHA_XOR_PREMUL**
- **ALPHA_PLUS_PREMUL**
- **ALPHA_PREMUL**
@param stream Stream for the asynchronous version.
@note
- An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp
*/
CV_EXPORTS_W void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
//! @} cudaimgproc_color
////////////////////////////// Histogram ///////////////////////////////
//! @addtogroup cudaimgproc_hist
//! @{
/** @brief Calculates histogram for one channel 8-bit image.
@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
/** @brief Calculates histogram for one channel 8-bit image confined in given mask.
@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param mask A mask image same size as src and of type CV_8UC1.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void calcHist(InputArray src, InputArray mask, OutputArray hist, Stream& stream = Stream::Null());
/** @brief Equalizes the histogram of a grayscale image.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.
@sa equalizeHist
*/
CV_EXPORTS_W void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
*/
class CV_EXPORTS_W CLAHE : public cv::CLAHE
{
public:
using cv::CLAHE::apply;
/** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
/** @brief Creates implementation for cuda::CLAHE .
@param clipLimit Threshold for contrast limiting.
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
*/
CV_EXPORTS_W Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
/** @brief Computes levels with even distribution.
@param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
@param nLevels Number of computed levels. nLevels must be at least 2.
@param lowerLevel Lower boundary value of the lowest level.
@param upperLevel Upper boundary value of the greatest level.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @brief Calculates a histogram with evenly distributed bins.
@param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, histSize columns, and the CV_32S type.
@param histSize Size of the histogram.
@param lowerLevel Lower boundary of lowest-level bin.
@param upperLevel Upper boundary of highest-level bin.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS_W void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
/** @brief Calculates a histogram with bins determined by the levels array.
@param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
@param levels Number of levels in the histogram.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS_W void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
//! @} cudaimgproc_hist
//////////////////////////////// Canny ////////////////////////////////
/** @brief Base class for Canny Edge Detector. :
*/
class CV_EXPORTS_W CannyEdgeDetector : public Algorithm
{
public:
/** @brief Finds edges in an image using the @cite Canny86 algorithm.
@param image Single-channel 8-bit input image.
@param edges Output edge map. It has the same size and type as image.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0;
/** @overload
@param dx First derivative of image in the vertical direction. Support only CV_32S type.
@param dy First derivative of image in the horizontal direction. Support only CV_32S type.
@param edges Output edge map. It has the same size and type as image.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0;
CV_WRAP virtual void setLowThreshold(double low_thresh) = 0;
CV_WRAP virtual double getLowThreshold() const = 0;
CV_WRAP virtual void setHighThreshold(double high_thresh) = 0;
CV_WRAP virtual double getHighThreshold() const = 0;
CV_WRAP virtual void setAppertureSize(int apperture_size) = 0;
CV_WRAP virtual int getAppertureSize() const = 0;
CV_WRAP virtual void setL2Gradient(bool L2gradient) = 0;
CV_WRAP virtual bool getL2Gradient() const = 0;
};
/** @brief Creates implementation for cuda::CannyEdgeDetector .
@param low_thresh First threshold for the hysteresis procedure.
@param high_thresh Second threshold for the hysteresis procedure.
@param apperture_size Aperture size for the Sobel operator.
@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
).
*/
CV_EXPORTS_W Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
/////////////////////////// Hough Transform ////////////////////////////
//////////////////////////////////////
// HoughLines
//! @addtogroup cudaimgproc_hough
//! @{
/** @brief Base class for lines detector algorithm. :
*/
class CV_EXPORTS_W HoughLinesDetector : public Algorithm
{
public:
/** @brief Finds lines in a binary image using the classical Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
@param stream Stream for the asynchronous version.
@sa HoughLines
*/
CV_WRAP virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
/** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
@param d_lines Result of cuda::HoughLinesDetector::detect .
@param h_lines Output host array.
@param h_votes Optional output array for line's votes.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;
CV_WRAP virtual void setRho(float rho) = 0;
CV_WRAP virtual float getRho() const = 0;
CV_WRAP virtual void setTheta(float theta) = 0;
CV_WRAP virtual float getTheta() const = 0;
CV_WRAP virtual void setThreshold(int threshold) = 0;
CV_WRAP virtual int getThreshold() const = 0;
CV_WRAP virtual void setDoSort(bool doSort) = 0;
CV_WRAP virtual bool getDoSort() const = 0;
CV_WRAP virtual void setMaxLines(int maxLines) = 0;
CV_WRAP virtual int getMaxLines() const = 0;
};
/** @brief Creates implementation for cuda::HoughLinesDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param doSort Performs lines sort by votes.
@param maxLines Maximum number of output lines.
*/
CV_EXPORTS_W Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
//////////////////////////////////////
// HoughLinesP
/** @brief Base class for line segments detector algorithm. :
*/
class CV_EXPORTS_W HoughSegmentDetector : public Algorithm
{
public:
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.
@param stream Stream for the asynchronous version.
@sa HoughLinesP
*/
CV_WRAP virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
CV_WRAP virtual void setRho(float rho) = 0;
CV_WRAP virtual float getRho() const = 0;
CV_WRAP virtual void setTheta(float theta) = 0;
CV_WRAP virtual float getTheta() const = 0;
CV_WRAP virtual void setMinLineLength(int minLineLength) = 0;
CV_WRAP virtual int getMinLineLength() const = 0;
CV_WRAP virtual void setMaxLineGap(int maxLineGap) = 0;
CV_WRAP virtual int getMaxLineGap() const = 0;
CV_WRAP virtual void setMaxLines(int maxLines) = 0;
CV_WRAP virtual int getMaxLines() const = 0;
CV_WRAP virtual void setThreshold(int threshold) = 0;
CV_WRAP virtual int getThreshold() const = 0;
};
/** @brief Creates implementation for cuda::HoughSegmentDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
@param maxLineGap Maximum allowed gap between points on the same line to link them.
@param maxLines Maximum number of output lines.
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
*/
CV_EXPORTS_W Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096, int threshold = -1);
//////////////////////////////////////
// HoughCircles
/** @brief Base class for circles detector algorithm. :
*/
class CV_EXPORTS_W HoughCirclesDetector : public Algorithm
{
public:
/** @brief Finds circles in a grayscale image using the Hough transform.
@param src 8-bit, single-channel grayscale input image.
@param circles Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$ .
@param stream Stream for the asynchronous version.
@sa HoughCircles
*/
CV_WRAP virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;
CV_WRAP virtual void setDp(float dp) = 0;
CV_WRAP virtual float getDp() const = 0;
CV_WRAP virtual void setMinDist(float minDist) = 0;
CV_WRAP virtual float getMinDist() const = 0;
CV_WRAP virtual void setCannyThreshold(int cannyThreshold) = 0;
CV_WRAP virtual int getCannyThreshold() const = 0;
CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
CV_WRAP virtual int getVotesThreshold() const = 0;
CV_WRAP virtual void setMinRadius(int minRadius) = 0;
CV_WRAP virtual int getMinRadius() const = 0;
CV_WRAP virtual void setMaxRadius(int maxRadius) = 0;
CV_WRAP virtual int getMaxRadius() const = 0;
CV_WRAP virtual void setMaxCircles(int maxCircles) = 0;
CV_WRAP virtual int getMaxCircles() const = 0;
};
/** @brief Creates implementation for cuda::HoughCirclesDetector .
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.
@param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).
@param votesThreshold The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.
@param minRadius Minimum circle radius.
@param maxRadius Maximum circle radius.
@param maxCircles Maximum number of output circles.
*/
CV_EXPORTS_W Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
//////////////////////////////////////
// GeneralizedHough
/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
*/
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
/** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
*/
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
//! @} cudaimgproc_hough
////////////////////////// Corners Detection ///////////////////////////
//! @addtogroup cudaimgproc_feature
//! @{
/** @brief Base class for Cornerness Criteria computation. :
*/
class CV_EXPORTS_W CornernessCriteria : public Algorithm
{
public:
/** @brief Computes the cornerness criteria at each image pixel.
@param src Source image.
@param dst Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for Harris cornerness criteria.
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerHarris
*/
CV_EXPORTS_W Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerMinEigenVal
*/
CV_EXPORTS_W Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
////////////////////////// Corners Detection ///////////////////////////
/** @brief Base class for Corners Detector. :
*/
class CV_EXPORTS_W CornersDetector : public Algorithm
{
public:
/** @brief Determines strong corners on an image.
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
CV_WRAP virtual void setMaxCorners(int maxCorners) = 0;
CV_WRAP virtual void setMinDistance(double minDistance) = 0;
};
/** @brief Creates implementation for cuda::CornersDetector .
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.
@param harrisK Free parameter of the Harris detector.
*/
CV_EXPORTS_W Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
//! @} cudaimgproc_feature
///////////////////////////// Mean Shift //////////////////////////////
/** @brief Performs mean-shift filtering for each point of the source image.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Destination image containing the color of mapped points. It has the same size and type
as src .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
*/
CV_EXPORTS_W void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dstr Destination image containing the color of mapped points. The size and type is the same
as src .
@param dstsp Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
@sa cuda::meanShiftFiltering
*/
CV_EXPORTS_W void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Segmented image with the same size and type as src (host or gpu memory).
@param sp Spatial window radius.
@param sr Color window radius.
@param minsize Minimum segment size. Smaller segments are merged.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/////////////////////////// Match Template ////////////////////////////
/** @brief Base class for Template Matching. :
*/
class CV_EXPORTS_W TemplateMatching : public Algorithm
{
public:
/** @brief Computes a proximity map for a raster template and an image where the template is searched for.
@param image Source image.
@param templ Template image with the size and type the same as image .
@param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
x h*, then result must be *W-w+1 x H-h+1*.
@param stream Stream for the asynchronous version.
*/
CV_WRAP virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for cuda::TemplateMatching .
@param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.
@param method Specifies the way to compare the template with the image.
@param user_block_size You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.
The following methods are supported for the CV_8U depth images for now:
- CV_TM_SQDIFF
- CV_TM_SQDIFF_NORMED
- CV_TM_CCORR
- CV_TM_CCORR_NORMED
- CV_TM_CCOEFF
- CV_TM_CCOEFF_NORMED
The following methods are supported for the CV_32F images for now:
- CV_TM_SQDIFF
- CV_TM_CCORR
@sa matchTemplate
*/
CV_EXPORTS_W Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
////////////////////////// Bilateral Filter ///////////////////////////
/** @brief Performs bilateral filtering of passed image
@param src Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).
@param dst Destination imagwe.
@param kernel_size Kernel window size.
@param sigma_color Filter sigma in the color space.
@param sigma_spatial Filter sigma in the coordinate space.
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
@param stream Stream for the asynchronous version.
@sa bilateralFilter
*/
CV_EXPORTS_W void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
///////////////////////////// Blending ////////////////////////////////
/** @brief Performs linear blending of two images.
@param img1 First image. Supports only CV_8U and CV_32F depth.
@param img2 Second image. Must have the same size and the same type as img1 .
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.
@param result Destination image.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS_W void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
OutputArray result, Stream& stream = Stream::Null());
/////////////////// Connected Components Labeling /////////////////////
//! Connected Components Algorithm
enum ConnectedComponentsAlgorithmsTypes {
CCL_DEFAULT = -1, //!< BKE @cite Allegretti2019 algorithm for 8-way connectivity.
CCL_BKE = 0, //!< BKE @cite Allegretti2019 algorithm for 8-way connectivity.
};
/** @brief Computes the Connected Components Labeled image of a binary image.
The function takes as input a binary image and performs Connected Components Labeling. The output
is an image where each Connected Component is assigned a unique label (integer value).
ltype specifies the output label image type, an important consideration based on the total
number of labels or alternatively the total number of pixels in the source image.
ccltype specifies the connected components labeling algorithm to use, currently
BKE @cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes
for details. Note that labels in the output are not required to be sequential.
@param image The 8-bit single-channel image to be labeled.
@param labels Destination labeled image.
@param connectivity Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.
@param ltype Output image label type. Currently CV_32S is supported.
@param ccltype Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
@note A sample program demonstrating Connected Components Labeling in CUDA can be found at\n
opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
*/
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) void connectedComponents(InputArray image, OutputArray labels,
int connectivity, int ltype, cv::cuda::ConnectedComponentsAlgorithmsTypes ccltype);
/** @overload
@param image The 8-bit single-channel image to be labeled.
@param labels Destination labeled image.
@param connectivity Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.
@param ltype Output image label type. Currently CV_32S is supported.
*/
CV_EXPORTS_W void connectedComponents(InputArray image, OutputArray labels,
int connectivity = 8, int ltype = CV_32S);
//! @}
//! @addtogroup cudaimgproc_shape
//! @{
/** @brief Order of image moments.
* @param FIRST_ORDER_MOMENTS First order moments
* @param SECOND_ORDER_MOMENTS Second order moments.
* @param THIRD_ORDER_MOMENTS Third order moments.
* */
enum MomentsOrder {
FIRST_ORDER_MOMENTS = 1,
SECOND_ORDER_MOMENTS = 2,
THIRD_ORDER_MOMENTS = 3
};
/** @brief Returns the number of image moments less than or equal to the largest image moments \a order.
@param order Order of largest moments to calculate with lower order moments requiring less computation.
@returns number of image moments.
@sa cuda::spatialMoments, cuda::moments, cuda::MomentsOrder
*/
CV_EXPORTS_W int numMoments(const MomentsOrder order);
/** @brief Converts the spatial image moments returned from cuda::spatialMoments to cv::Moments.
@param spatialMoments Spatial moments returned from cuda::spatialMoments.
@param order Order used when calculating image moments with cuda::spatialMoments.
@param momentsType Precision used when calculating image moments with cuda::spatialMoments.
@returns cv::Moments.
@sa cuda::spatialMoments, cuda::moments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
*/
CV_EXPORTS_W Moments convertSpatialMoments(Mat spatialMoments, const MomentsOrder order, const int momentsType);
/** @brief Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape.
Each moment is returned as a column entry in the 1D \a moments array.
@param src Raster image (single-channel 2D array).
@param [out] moments 1D array with each column entry containing a spatial image moment.
@param binaryImage If it is true, all non-zero image pixels are treated as 1's.
@param order Order of largest moments to calculate with lower order moments requiring less computation.
@param momentsType Precision to use when calculating moments. Available types are \ref CV_32F and \ref CV_64F with the performance of \ref CV_32F an order of magnitude greater than \ref CV_64F. If the image is small the accuracy from \ref CV_32F can be equal or very close to \ref CV_64F.
@param stream Stream for the asynchronous version.
@note For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == \ref CV_32F \a moments can be allocated as
```
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
```
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cuda::convertSpatialMoments helper function. e.g.
```
HostMem spatialMomentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
spatialMomentsDevice.download(spatialMomentsHostMem, stream);
stream.waitForCompletion();
Mat spatialMoments = spatialMomentsHostMem.createMatHeader();
cv::Moments cvMoments = convertSpatialMoments<float>(spatialMoments, order);
```
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
*/
CV_EXPORTS_W void spatialMoments(InputArray src, OutputArray moments, const bool binaryImage = false, const MomentsOrder order = MomentsOrder::THIRD_ORDER_MOMENTS, const int momentsType = CV_64F, Stream& stream = Stream::Null());
/** @brief Calculates all of the moments up to the 3rd order of a rasterized shape.
The function computes moments, up to the 3rd order, of a rasterized shape. The
results are returned in the structure cv::Moments.
@param src Raster image (single-channel 2D array).
@param binaryImage If it is true, all non-zero image pixels are treated as 1's.
@param order Order of largest moments to calculate with lower order moments requiring less computation.
@param momentsType Precision to use when calculating moments. Available types are \ref CV_32F and \ref CV_64F with the performance of \ref CV_32F an order of magnitude greater than \ref CV_64F. If the image is small the accuracy from \ref CV_32F can be equal or very close to \ref CV_64F.
@note For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host.
The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
```
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
```
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::spatialMoments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
*/
CV_EXPORTS_W Moments moments(InputArray src, const bool binaryImage = false, const MomentsOrder order = MomentsOrder::THIRD_ORDER_MOMENTS, const int momentsType = CV_64F);
//! @} cudaimgproc_shape
}} // namespace cv { namespace cuda {
#endif /* OPENCV_CUDAIMGPROC_HPP */