Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

198 lines
6.9 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldEnsembleClassifier.hpp"
namespace cv
{
namespace tld
{
// Constructor
TLDEnsembleClassifier::TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end) :lastStep_(-1)
{
int posSize = 1, mpc = end - beg;
for (int i = 0; i < mpc; i++)
posSize *= 2;
posAndNeg.assign(posSize, Point2i(0, 0));
measurements.assign(meas.begin() + beg, meas.begin() + end);
offset.assign(mpc, Point2i(0, 0));
}
// Calculate measure locations from 15x15 grid on minSize patches
void TLDEnsembleClassifier::stepPrefSuff(std::vector<Vec4b>& arr, int pos, int len, int gridSize)
{
#if 0
int step = len / (gridSize - 1), pref = (len - step * (gridSize - 1)) / 2;
for (int i = 0; i < (int)(sizeof(x1) / sizeof(x1[0])); i++)
arr[i] = pref + arr[i] * step;
#else
int total = len - gridSize;
int quo = total / (gridSize - 1), rem = total % (gridSize - 1);
int smallStep = quo, bigStep = quo + 1;
int bigOnes = rem, smallOnes = gridSize - bigOnes - 1;
int bigOnes_front = bigOnes / 2, bigOnes_back = bigOnes - bigOnes_front;
for (int i = 0; i < (int)arr.size(); i++)
{
if (arr[i].val[pos] < bigOnes_back)
{
arr[i].val[pos] = (uchar)(arr[i].val[pos] * bigStep + arr[i].val[pos]);
continue;
}
if (arr[i].val[pos] < (bigOnes_front + smallOnes))
{
arr[i].val[pos] = (uchar)(bigOnes_front * bigStep + (arr[i].val[pos] - bigOnes_front) * smallStep + arr[i].val[pos]);
continue;
}
if (arr[i].val[pos] < (bigOnes_front + smallOnes + bigOnes_back))
{
arr[i].val[pos] =
(uchar)(bigOnes_front * bigStep + smallOnes * smallStep +
(arr[i].val[pos] - (bigOnes_front + smallOnes)) * bigStep + arr[i].val[pos]);
continue;
}
arr[i].val[pos] = (uchar)(len - 1);
}
#endif
}
// Calculate offsets for classifier
void TLDEnsembleClassifier::prepareClassifier(int rowstep)
{
if (lastStep_ != rowstep)
{
lastStep_ = rowstep;
for (int i = 0; i < (int)offset.size(); i++)
{
offset[i].x = rowstep * measurements[i].val[2] + measurements[i].val[0];
offset[i].y = rowstep * measurements[i].val[3] + measurements[i].val[1];
}
}
}
// Integrate patch into the Ensemble Classifier model
void TLDEnsembleClassifier::integrate(const Mat_<uchar>& patch, bool isPositive)
{
int position = code(patch.data, (int)patch.step[0]);
if (isPositive)
posAndNeg[position].x++;
else
posAndNeg[position].y++;
}
// Calculate posterior probability on the patch
double TLDEnsembleClassifier::posteriorProbability(const uchar* data, int rowstep) const
{
int position = code(data, rowstep);
double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y;
if (posNum == 0.0 && negNum == 0.0)
return 0.0;
else
return posNum / (posNum + negNum);
}
double TLDEnsembleClassifier::posteriorProbabilityFast(const uchar* data) const
{
int position = codeFast(data);
double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y;
if (posNum == 0.0 && negNum == 0.0)
return 0.0;
else
return posNum / (posNum + negNum);
}
// Calculate the 13-bit fern index
int TLDEnsembleClassifier::codeFast(const uchar* data) const
{
int position = 0;
for (int i = 0; i < (int)measurements.size(); i++)
{
position = position << 1;
if (data[offset[i].x] < data[offset[i].y])
position++;
}
return position;
}
int TLDEnsembleClassifier::code(const uchar* data, int rowstep) const
{
int position = 0;
for (int i = 0; i < (int)measurements.size(); i++)
{
position = position << 1;
if (*(data + rowstep * measurements[i].val[2] + measurements[i].val[0]) <
*(data + rowstep * measurements[i].val[3] + measurements[i].val[1]))
{
position++;
}
}
return position;
}
// Create fern classifiers
int TLDEnsembleClassifier::makeClassifiers(Size size, int measurePerClassifier, int gridSize,
std::vector<TLDEnsembleClassifier>& classifiers)
{
std::vector<Vec4b> measurements;
//Generate random measures for 10 ferns x 13 measures
for (int i = 0; i < 10*measurePerClassifier; i++)
{
Vec4b m;
m.val[0] = rand() % 15;
m.val[1] = rand() % 15;
m.val[2] = rand() % 15;
m.val[3] = rand() % 15;
measurements.push_back(m);
}
//Warp measures to minSize patch coordinates
stepPrefSuff(measurements, 0, size.width, gridSize);
stepPrefSuff(measurements, 1, size.width, gridSize);
stepPrefSuff(measurements, 2, size.height, gridSize);
stepPrefSuff(measurements, 3, size.height, gridSize);
//Compile fern classifiers
for (int i = 0, howMany = (int)measurements.size() / measurePerClassifier; i < howMany; i++)
classifiers.push_back(TLDEnsembleClassifier(measurements, i * measurePerClassifier, (i + 1) * measurePerClassifier));
return (int)classifiers.size();
}
}
}