You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.8 KiB
80 lines
2.8 KiB
/* |
|
* cropped_word_recognition.cpp |
|
* |
|
* A demo program of text recognition in a given cropped word. |
|
* Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier. |
|
* |
|
* Created on: Jul 9, 2015 |
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es> |
|
*/ |
|
|
|
#include "opencv2/text.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::text; |
|
|
|
int main(int argc, char* argv[]) |
|
{ |
|
|
|
cout << endl << argv[0] << endl << endl; |
|
cout << "A demo program of Scene Text cropped word Recognition: " << endl; |
|
cout << "Shows the use of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in:" << endl; |
|
cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl; |
|
|
|
Mat image; |
|
if(argc>1) |
|
image = imread(argv[1]); |
|
else |
|
{ |
|
cout << " Usage: " << argv[0] << " <input_image>" << endl << endl; |
|
return(0); |
|
} |
|
|
|
string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the clasifier output classes |
|
vector<string> lexicon; // a list of words expected to be found on the input image |
|
lexicon.push_back(string("abb")); |
|
lexicon.push_back(string("patata")); |
|
lexicon.push_back(string("CHINA")); |
|
lexicon.push_back(string("HERE")); |
|
lexicon.push_back(string("President")); |
|
lexicon.push_back(string("smash")); |
|
lexicon.push_back(string("KUALA")); |
|
lexicon.push_back(string("NINTENDO")); |
|
|
|
// Create tailored language model a small given lexicon |
|
Mat transition_p; |
|
createOCRHMMTransitionsTable(vocabulary,lexicon,transition_p); |
|
|
|
// An alternative would be to load the default generic language model |
|
// (created from ispell 42869 english words list) |
|
/*Mat transition_p; |
|
string filename = "OCRHMM_transitions_table.xml"; // TODO use same order for voc |
|
FileStorage fs(filename, FileStorage::READ); |
|
fs["transition_probabilities"] >> transition_p; |
|
fs.release();*/ |
|
|
|
Mat emission_p = Mat::eye(62,62,CV_64FC1); |
|
|
|
Ptr<OCRBeamSearchDecoder> ocr = OCRBeamSearchDecoder::create( |
|
loadOCRBeamSearchClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"), |
|
vocabulary, transition_p, emission_p); |
|
|
|
double t_r = (double)getTickCount(); |
|
string output; |
|
|
|
vector<Rect> boxes; |
|
vector<string> words; |
|
vector<float> confidences; |
|
ocr->run(image, output, &boxes, &words, &confidences, OCR_LEVEL_WORD); |
|
|
|
cout << "OCR output = \"" << output << "\". Decoded in " |
|
<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl; |
|
|
|
return 0; |
|
}
|
|
|