You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
6.7 KiB
153 lines
6.7 KiB
/* |
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>. |
|
* Released to public domain under terms of the BSD Simplified license. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of the organization nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* See <http://www.opensource.org/licenses/bsd-license> |
|
*/ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/face.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/objdetect.hpp" |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <sstream> |
|
|
|
using namespace cv; |
|
using namespace cv::face; |
|
using namespace std; |
|
|
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') { |
|
std::ifstream file(filename.c_str(), ifstream::in); |
|
if (!file) { |
|
string error_message = "No valid input file was given, please check the given filename."; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
string line, path, classlabel; |
|
while (getline(file, line)) { |
|
stringstream liness(line); |
|
getline(liness, path, separator); |
|
getline(liness, classlabel); |
|
if(!path.empty() && !classlabel.empty()) { |
|
images.push_back(imread(path, 0)); |
|
labels.push_back(atoi(classlabel.c_str())); |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, const char *argv[]) { |
|
// Check for valid command line arguments, print usage |
|
// if no arguments were given. |
|
if (argc != 4) { |
|
cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl; |
|
cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl; |
|
cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl; |
|
cout << "\t <device id> -- The webcam device id to grab frames from." << endl; |
|
exit(1); |
|
} |
|
// Get the path to your CSV: |
|
string fn_haar = string(argv[1]); |
|
string fn_csv = string(argv[2]); |
|
int deviceId = atoi(argv[3]); |
|
// These vectors hold the images and corresponding labels: |
|
vector<Mat> images; |
|
vector<int> labels; |
|
// Read in the data (fails if no valid input filename is given, but you'll get an error message): |
|
try { |
|
read_csv(fn_csv, images, labels); |
|
} catch (cv::Exception& e) { |
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl; |
|
// nothing more we can do |
|
exit(1); |
|
} |
|
// Get the height from the first image. We'll need this |
|
// later in code to reshape the images to their original |
|
// size AND we need to reshape incoming faces to this size: |
|
int im_width = images[0].cols; |
|
int im_height = images[0].rows; |
|
// Create a FaceRecognizer and train it on the given images: |
|
Ptr<BasicFaceRecognizer> model = createFisherFaceRecognizer(); |
|
model->train(images, labels); |
|
// That's it for learning the Face Recognition model. You now |
|
// need to create the classifier for the task of Face Detection. |
|
// We are going to use the haar cascade you have specified in the |
|
// command line arguments: |
|
// |
|
CascadeClassifier haar_cascade; |
|
haar_cascade.load(fn_haar); |
|
// Get a handle to the Video device: |
|
VideoCapture cap(deviceId); |
|
// Check if we can use this device at all: |
|
if(!cap.isOpened()) { |
|
cerr << "Capture Device ID " << deviceId << "cannot be opened." << endl; |
|
return -1; |
|
} |
|
// Holds the current frame from the Video device: |
|
Mat frame; |
|
for(;;) { |
|
cap >> frame; |
|
// Clone the current frame: |
|
Mat original = frame.clone(); |
|
// Convert the current frame to grayscale: |
|
Mat gray; |
|
cvtColor(original, gray, COLOR_BGR2GRAY); |
|
// Find the faces in the frame: |
|
vector< Rect_<int> > faces; |
|
haar_cascade.detectMultiScale(gray, faces); |
|
// At this point you have the position of the faces in |
|
// faces. Now we'll get the faces, make a prediction and |
|
// annotate it in the video. Cool or what? |
|
for(size_t i = 0; i < faces.size(); i++) { |
|
// Process face by face: |
|
Rect face_i = faces[i]; |
|
// Crop the face from the image. So simple with OpenCV C++: |
|
Mat face = gray(face_i); |
|
// Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily |
|
// verify this, by reading through the face recognition tutorial coming with OpenCV. |
|
// Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the |
|
// input data really depends on the algorithm used. |
|
// |
|
// I strongly encourage you to play around with the algorithms. See which work best |
|
// in your scenario, LBPH should always be a contender for robust face recognition. |
|
// |
|
// Since I am showing the Fisherfaces algorithm here, I also show how to resize the |
|
// face you have just found: |
|
Mat face_resized; |
|
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC); |
|
// Now perform the prediction, see how easy that is: |
|
int prediction = model->predict(face_resized); |
|
// And finally write all we've found out to the original image! |
|
// First of all draw a green rectangle around the detected face: |
|
rectangle(original, face_i, Scalar(0, 255,0), 1); |
|
// Create the text we will annotate the box with: |
|
string box_text = format("Prediction = %d", prediction); |
|
// Calculate the position for annotated text (make sure we don't |
|
// put illegal values in there): |
|
int pos_x = std::max(face_i.tl().x - 10, 0); |
|
int pos_y = std::max(face_i.tl().y - 10, 0); |
|
// And now put it into the image: |
|
putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, Scalar(0,255,0), 2); |
|
} |
|
// Show the result: |
|
imshow("face_recognizer", original); |
|
// And display it: |
|
char key = (char) waitKey(20); |
|
// Exit this loop on escape: |
|
if(key == 27) |
|
break; |
|
} |
|
return 0; |
|
}
|
|
|