Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

332 lines
12 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldModel.hpp"
namespace cv
{
namespace tld
{
//Constructor
TrackerTLDModel::TrackerTLDModel(TrackerTLD::Params params, const Mat& image, const Rect2d& boundingBox, Size minSize):
timeStampPositiveNext(0), timeStampNegativeNext(0), minSize_(minSize), params_(params), boundingBox_(boundingBox)
{
std::vector<Rect2d> closest, scanGrid;
Mat scaledImg, blurredImg, image_blurred;
//Create Detector
detector = Ptr<TLDDetector>(new TLDDetector());
//Propagate data to Detector
posNum = 0;
negNum = 0;
posExp = Mat(Size(225, 500), CV_8UC1);
negExp = Mat(Size(225, 500), CV_8UC1);
detector->posNum = &posNum;
detector->negNum = &negNum;
detector->posExp = &posExp;
detector->negExp = &negExp;
detector->positiveExamples = &positiveExamples;
detector->negativeExamples = &negativeExamples;
detector->timeStampsPositive = &timeStampsPositive;
detector->timeStampsNegative = &timeStampsNegative;
detector->originalVariancePtr = &originalVariance_;
//Calculate the variance in initial BB
originalVariance_ = variance(image(boundingBox));
//Find the scale
double scale = scaleAndBlur(image, cvRound(log(1.0 * boundingBox.width / (minSize.width)) / log(SCALE_STEP)),
scaledImg, blurredImg, GaussBlurKernelSize, SCALE_STEP);
GaussianBlur(image, image_blurred, GaussBlurKernelSize, 0.0);
TLDDetector::generateScanGrid(image.rows, image.cols, minSize_, scanGrid);
getClosestN(scanGrid, Rect2d(boundingBox.x / scale, boundingBox.y / scale, boundingBox.width / scale, boundingBox.height / scale), 10, closest);
Mat_<uchar> blurredPatch(minSize);
TLDEnsembleClassifier::makeClassifiers(minSize, MEASURES_PER_CLASSIFIER, GRIDSIZE, detector->classifiers);
//Generate initial positive samples and put them to the model
positiveExamples.reserve(200);
for (int i = 0; i < (int)closest.size(); i++)
{
for (int j = 0; j < 20; j++)
{
Point2f center;
Size2f size;
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
center.x = (float)(closest[i].x + closest[i].width * (0.5 + rng.uniform(-0.01, 0.01)));
center.y = (float)(closest[i].y + closest[i].height * (0.5 + rng.uniform(-0.01, 0.01)));
size.width = (float)(closest[i].width * rng.uniform((double)0.99, (double)1.01));
size.height = (float)(closest[i].height * rng.uniform((double)0.99, (double)1.01));
float angle = (float)rng.uniform(-10.0, 10.0);
resample(scaledImg, RotatedRect(center, size, angle), standardPatch);
for (int y = 0; y < standardPatch.rows; y++)
{
for (int x = 0; x < standardPatch.cols; x++)
{
standardPatch(x, y) += (uchar)rng.gaussian(5.0);
}
}
#ifdef BLUR_AS_VADIM
GaussianBlur(standardPatch, blurredPatch, GaussBlurKernelSize, 0.0);
resize(blurredPatch, blurredPatch, minSize);
#else
resample(blurredImg, RotatedRect(center, size, angle), blurredPatch);
#endif
pushIntoModel(standardPatch, true);
for (int k = 0; k < (int)detector->classifiers.size(); k++)
detector->classifiers[k].integrate(blurredPatch, true);
}
}
//Generate initial negative samples and put them to the model
TLDDetector::generateScanGrid(image.rows, image.cols, minSize, scanGrid, true);
negativeExamples.clear();
negativeExamples.reserve(NEG_EXAMPLES_IN_INIT_MODEL);
std::vector<int> indices;
indices.reserve(NEG_EXAMPLES_IN_INIT_MODEL);
while ((int)negativeExamples.size() < NEG_EXAMPLES_IN_INIT_MODEL)
{
int i = rng.uniform((int)0, (int)scanGrid.size());
if (std::find(indices.begin(), indices.end(), i) == indices.end() && overlap(boundingBox, scanGrid[i]) < NEXPERT_THRESHOLD)
{
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
resample(image, scanGrid[i], standardPatch);
pushIntoModel(standardPatch, false);
resample(image_blurred, scanGrid[i], blurredPatch);
for (int k = 0; k < (int)detector->classifiers.size(); k++)
detector->classifiers[k].integrate(blurredPatch, false);
}
}
}
void TrackerTLDModel::integrateRelabeled(Mat& img, Mat& imgBlurred, const std::vector<TLDDetector::LabeledPatch>& patches)
{
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE), blurredPatch(minSize_);
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
for (int k = 0; k < (int)patches.size(); k++)
{
if (patches[k].shouldBeIntegrated)
{
resample(img, patches[k].rect, standardPatch);
if (patches[k].isObject)
{
positiveIntoModel++;
pushIntoModel(standardPatch, true);
}
else
{
negativeIntoModel++;
pushIntoModel(standardPatch, false);
}
}
#ifdef CLOSED_LOOP
if (patches[k].shouldBeIntegrated || !patches[k].isPositive)
#else
if (patches[k].shouldBeIntegrated)
#endif
{
resample(imgBlurred, patches[k].rect, blurredPatch);
if (patches[k].isObject)
positiveIntoEnsemble++;
else
negativeIntoEnsemble++;
for (int i = 0; i < (int)detector->classifiers.size(); i++)
detector->classifiers[i].integrate(blurredPatch, patches[k].isObject);
}
}
}
void TrackerTLDModel::integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive)
{
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return;
for (int k = 0; k < (int)eForModel.size(); k++)
{
double sr = detector->Sr(eForModel[k]);
if ((sr > THETA_NN) != isPositive)
{
if (isPositive)
{
positiveIntoModel++;
pushIntoModel(eForModel[k], true);
}
else
{
negativeIntoModel++;
pushIntoModel(eForModel[k], false);
}
}
double p = 0;
for (int i = 0; i < (int)detector->classifiers.size(); i++)
p += detector->classifiers[i].posteriorProbability(eForEnsemble[k].data, (int)eForEnsemble[k].step[0]);
p /= detector->classifiers.size();
if ((p > ENSEMBLE_THRESHOLD) != isPositive)
{
if (isPositive)
positiveIntoEnsemble++;
else
negativeIntoEnsemble++;
for (int i = 0; i < (int)detector->classifiers.size(); i++)
detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
}
}
}
void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive)
{
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return;
//Prepare batch of patches
int numOfPatches = (int)eForModel.size();
Mat_<uchar> stdPatches(numOfPatches, 225);
double *resultSr = new double[numOfPatches];
double *resultSc = new double[numOfPatches];
uchar *patchesData = stdPatches.data;
for (int i = 0; i < numOfPatches; i++)
{
uchar *stdPatchData = eForModel[i].data;
for (int j = 0; j < 225; j++)
patchesData[225 * i + j] = stdPatchData[j];
}
//Calculate Sr and Sc batches
detector->ocl_batchSrSc(stdPatches, resultSr, resultSc, numOfPatches);
for (int k = 0; k < (int)eForModel.size(); k++)
{
double sr = resultSr[k];
if ((sr > THETA_NN) != isPositive)
{
if (isPositive)
{
positiveIntoModel++;
pushIntoModel(eForModel[k], true);
}
else
{
negativeIntoModel++;
pushIntoModel(eForModel[k], false);
}
}
double p = 0;
for (int i = 0; i < (int)detector->classifiers.size(); i++)
p += detector->classifiers[i].posteriorProbability(eForEnsemble[k].data, (int)eForEnsemble[k].step[0]);
p /= detector->classifiers.size();
if ((p > ENSEMBLE_THRESHOLD) != isPositive)
{
if (isPositive)
positiveIntoEnsemble++;
else
negativeIntoEnsemble++;
for (int i = 0; i < (int)detector->classifiers.size(); i++)
detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
}
}
}
//Push the patch to the model
void TrackerTLDModel::pushIntoModel(const Mat_<uchar>& example, bool positive)
{
std::vector<Mat_<uchar> >* proxyV;
int* proxyN;
std::vector<int>* proxyT;
if (positive)
{
if (posNum < 500)
{
uchar *patchPtr = example.data;
uchar *modelPtr = posExp.data;
for (int i = 0; i < STANDARD_PATCH_SIZE*STANDARD_PATCH_SIZE; i++)
modelPtr[posNum*STANDARD_PATCH_SIZE*STANDARD_PATCH_SIZE + i] = patchPtr[i];
posNum++;
}
proxyV = &positiveExamples;
proxyN = &timeStampPositiveNext;
proxyT = &timeStampsPositive;
}
else
{
if (negNum < 500)
{
uchar *patchPtr = example.data;
uchar *modelPtr = negExp.data;
for (int i = 0; i < STANDARD_PATCH_SIZE*STANDARD_PATCH_SIZE; i++)
modelPtr[negNum*STANDARD_PATCH_SIZE*STANDARD_PATCH_SIZE + i] = patchPtr[i];
negNum++;
}
proxyV = &negativeExamples;
proxyN = &timeStampNegativeNext;
proxyT = &timeStampsNegative;
}
if ((int)proxyV->size() < MAX_EXAMPLES_IN_MODEL)
{
proxyV->push_back(example);
proxyT->push_back(*proxyN);
}
else
{
int index = rng.uniform((int)0, (int)proxyV->size());
(*proxyV)[index] = example;
(*proxyT)[index] = (*proxyN);
}
(*proxyN)++;
}
void TrackerTLDModel::printme(FILE* port)
{
dfprintf((port, "TrackerTLDModel:\n"));
dfprintf((port, "\tpositiveExamples.size() = %d\n", (int)positiveExamples.size()));
dfprintf((port, "\tnegativeExamples.size() = %d\n", (int)negativeExamples.size()));
}
}
}