You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
4.9 KiB
150 lines
4.9 KiB
/* |
|
|
|
By downloading, copying, installing or using the software you agree to this |
|
license. If you do not agree to this license, do not download, install, |
|
copy or use the software. |
|
|
|
|
|
License Agreement |
|
For Open Source Computer Vision Library |
|
(3-clause BSD License) |
|
|
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
Third party copyrights are property of their respective owners. |
|
|
|
Redistribution and use in source and binary forms, with or without modification, |
|
are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
|
|
* Neither the names of the copyright holders nor the names of the contributors |
|
may be used to endorse or promote products derived from this software |
|
without specific prior written permission. |
|
|
|
This software is provided by the copyright holders and contributors "as is" and |
|
any express or implied warranties, including, but not limited to, the implied |
|
warranties of merchantability and fitness for a particular purpose are |
|
disclaimed. In no event shall copyright holders or contributors be liable for |
|
any direct, indirect, incidental, special, exemplary, or consequential damages |
|
(including, but not limited to, procurement of substitute goods or services; |
|
loss of use, data, or profits; or business interruption) however caused |
|
and on any theory of liability, whether in contract, strict liability, |
|
or tort (including negligence or otherwise) arising in any way out of |
|
the use of this software, even if advised of the possibility of such damage. |
|
|
|
*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using std::vector; |
|
using std::string; |
|
|
|
using std::min; |
|
using std::max; |
|
|
|
namespace cv |
|
{ |
|
namespace xobjdetect |
|
{ |
|
|
|
static bool overlap(const Rect& r, const vector<Rect>& gt) |
|
{ |
|
for( size_t i = 0; i < gt.size(); ++i ) |
|
if( (r & gt[i]).area() ) |
|
return true; |
|
return false; |
|
} |
|
|
|
void ICFDetector::train(const vector<string>& image_filenames, |
|
const vector< vector<Rect> >& labelling, |
|
ICFDetectorParams params) |
|
{ |
|
Size model_size(params.model_n_cols, params.model_n_rows); |
|
|
|
vector<Mat> samples; /* positive samples + negative samples */ |
|
Mat sample, resized_sample; |
|
int pos_count = 0; |
|
for( size_t i = 0; i < image_filenames.size(); ++i, ++pos_count ) |
|
{ |
|
Mat img = imread(String(image_filenames[i].c_str())); |
|
for( size_t j = 0; j < labelling[i].size(); ++j ) |
|
{ |
|
Rect r = labelling[i][j]; |
|
if( r.x > img.cols || r.y > img.rows ) |
|
continue; |
|
|
|
sample = img.colRange(max(r.x, 0), min(r.width, img.cols)) |
|
.rowRange(max(r.y, 0), min(r.height, img.rows)); |
|
|
|
resize(sample, resized_sample, model_size); |
|
|
|
samples.push_back(resized_sample); |
|
} |
|
} |
|
|
|
int neg_count = 0; |
|
RNG rng; |
|
for( size_t i = 0; i < image_filenames.size(); ++i ) |
|
{ |
|
Mat img = imread(String(image_filenames[i].c_str())); |
|
for( int j = 0; j < (int)(pos_count / image_filenames.size() + 1); ) |
|
{ |
|
Rect r; |
|
r.x = rng.uniform(0, img.cols); |
|
r.width = rng.uniform(r.x + 1, img.cols); |
|
r.y = rng.uniform(0, img.rows); |
|
r.height = rng.uniform(r.y + 1, img.rows); |
|
|
|
if( !overlap(r, labelling[i]) ) |
|
{ |
|
sample = img.colRange(r.x, r.width).rowRange(r.y, r.height); |
|
//resize(sample, resized_sample); |
|
samples.push_back(resized_sample); |
|
++neg_count; |
|
++j; |
|
} |
|
} |
|
} |
|
|
|
Mat_<int> labels(1, pos_count + neg_count); |
|
for( int i = 0; i < pos_count; ++i) |
|
labels(0, i) = 1; |
|
for( int i = pos_count; i < pos_count + neg_count; ++i ) |
|
labels(0, i) = -1; |
|
|
|
vector<Point3i> features = generateFeatures(model_size); |
|
Ptr<ACFFeatureEvaluator> feature_evaluator = createACFFeatureEvaluator(features); |
|
|
|
Mat_<int> data((int)features.size(), (int)samples.size()); |
|
Mat_<int> feature_col; |
|
|
|
vector<Mat> channels; |
|
for( int i = 0; i < (int)samples.size(); ++i ) |
|
{ |
|
computeChannels(samples[i], channels); |
|
feature_evaluator->setChannels(channels); |
|
feature_evaluator->evaluateAll(feature_col); |
|
for( int j = 0; j < feature_col.rows; ++j ) |
|
data(i, j) = feature_col(0, j); |
|
} |
|
|
|
WaldBoostParams wparams; |
|
wparams.weak_count = params.weak_count; |
|
wparams.alpha = 0.001f; |
|
|
|
Ptr<WaldBoost> waldboost = createWaldBoost(wparams); |
|
waldboost->train(data, labels); |
|
} |
|
|
|
bool ICFDetector::save(const string&) |
|
{ |
|
return true; |
|
} |
|
|
|
} /* namespace xobjdetect */ |
|
} /* namespace cv */
|
|
|