You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.2 KiB
160 lines
5.2 KiB
/* |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright (c) 2009, Willow Garage, Inc. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following |
|
* disclaimer in the documentation and/or other materials provided |
|
* with the distribution. |
|
* * Neither the name of Willow Garage, Inc. nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/sfm/robust.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::sfm; |
|
using namespace cvtest; |
|
using namespace std; |
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRobust) |
|
{ |
|
double tolerance = 1e-8; |
|
const int n = 16; |
|
Mat_<double> x1(2,n); |
|
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, |
|
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5; |
|
|
|
Mat_<double> x2 = x1.clone(); |
|
for (int i = 0; i < n; ++i) |
|
{ |
|
x2(0,i) += i % 2; // Multiple horizontal disparities. |
|
} |
|
x2(0,n - 1) = 10; |
|
x2(1,n - 1) = 10; // The outlier has vertical disparity. |
|
|
|
Matx33d F; |
|
vector<int> inliers; |
|
fundamentalFromCorrespondences8PointRobust(x1, x2, 0.1, F, inliers); |
|
|
|
// F should be 0, 0, 0, |
|
// 0, 0, -1, |
|
// 0, 1, 0 |
|
EXPECT_NEAR(0.0, F(0,0), tolerance); |
|
EXPECT_NEAR(0.0, F(0,1), tolerance); |
|
EXPECT_NEAR(0.0, F(0,2), tolerance); |
|
EXPECT_NEAR(0.0, F(1,0), tolerance); |
|
EXPECT_NEAR(0.0, F(1,1), tolerance); |
|
EXPECT_NEAR(0.0, F(2,0), tolerance); |
|
EXPECT_NEAR(0.0, F(2,2), tolerance); |
|
EXPECT_NEAR(F(1,2), -F(2,1), tolerance); |
|
|
|
EXPECT_EQ(n - 1, inliers.size()); |
|
} |
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRealisticNoOutliers) |
|
{ |
|
double tolerance = 1e-8; |
|
cvtest::TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d F_estimated; |
|
|
|
vector<int> inliers; |
|
fundamentalFromCorrespondences8PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers); |
|
EXPECT_EQ(d.x1.cols, inliers.size()); |
|
|
|
// Normalize. |
|
Matx33d F_gt_norm, F_estimated_norm; |
|
normalizeFundamental(d.F, F_gt_norm); |
|
normalizeFundamental(F_estimated, F_estimated_norm); |
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance); |
|
|
|
// Check fundamental properties. |
|
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance); |
|
} |
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRobust) |
|
{ |
|
double tolerance = 1e-8; |
|
const int n = 16; |
|
Mat_<double> x1(2,n); |
|
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, |
|
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5; |
|
|
|
Mat_<double> x2 = x1.clone(); |
|
for (int i = 0; i < n; ++i) |
|
{ |
|
x2(0,i) += i % 2; // Multiple horizontal disparities. |
|
} |
|
x2(0,n - 1) = 10; |
|
x2(1,n - 1) = 10; // The outlier has vertical disparity. |
|
|
|
Matx33d F; |
|
vector<int> inliers; |
|
fundamentalFromCorrespondences7PointRobust(x1, x2, 0.1, F, inliers); |
|
|
|
// F should be 0, 0, 0, |
|
// 0, 0, -1, |
|
// 0, 1, 0 |
|
EXPECT_NEAR(0.0, F(0,0), tolerance); |
|
EXPECT_NEAR(0.0, F(0,1), tolerance); |
|
EXPECT_NEAR(0.0, F(0,2), tolerance); |
|
EXPECT_NEAR(0.0, F(1,0), tolerance); |
|
EXPECT_NEAR(0.0, F(1,1), tolerance); |
|
EXPECT_NEAR(0.0, F(2,0), tolerance); |
|
EXPECT_NEAR(0.0, F(2,2), tolerance); |
|
EXPECT_NEAR(F(1,2), -F(2,1), tolerance); |
|
|
|
EXPECT_EQ(n - 1, inliers.size()); |
|
} |
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRealisticNoOutliers) |
|
{ |
|
double tolerance = 1e-8; |
|
cvtest::TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d F_estimated; |
|
|
|
vector<int> inliers; |
|
fundamentalFromCorrespondences7PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers); |
|
EXPECT_EQ(d.x1.cols, inliers.size()); |
|
|
|
// Normalize. |
|
Matx33d F_gt_norm, F_estimated_norm; |
|
normalizeFundamental(d.F, F_gt_norm); |
|
normalizeFundamental(F_estimated, F_estimated_norm); |
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance); |
|
|
|
// Check fundamental properties. |
|
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance); |
|
} |