You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.3 KiB
96 lines
3.3 KiB
#include <opencv2/text.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/dnn.hpp> |
|
|
|
#include <sstream> |
|
#include <iostream> |
|
#include <fstream> |
|
|
|
using namespace cv; |
|
|
|
namespace |
|
{ |
|
std::string getHelpStr(const std::string& progFname) |
|
{ |
|
std::stringstream out; |
|
out << " Demo of text detection CNN for text detection." << std::endl |
|
<< " Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, Wenyu Liu: TextBoxes: A Fast Text Detector with a Single Deep Neural Network, AAAI2017\n\n" |
|
<< " Usage: " << progFname << " <output_file> <input_image>" << std::endl |
|
<< " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"<<std::endl |
|
<< " must be in the current directory. See the documentation of text::TextDetectorCNN class to get download links." << std::endl; |
|
return out.str(); |
|
} |
|
|
|
bool fileExists (const std::string& filename) |
|
{ |
|
std::ifstream f(filename.c_str()); |
|
return f.good(); |
|
} |
|
|
|
void textbox_draw(Mat src, std::vector<Rect>& groups, std::vector<float>& probs, std::vector<int>& indexes) |
|
{ |
|
for (size_t i = 0; i < indexes.size(); i++) |
|
{ |
|
if (src.type() == CV_8UC3) |
|
{ |
|
Rect currrentBox = groups[indexes[i]]; |
|
rectangle(src, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA); |
|
String label = format("%.2f", probs[indexes[i]]); |
|
std::cout << "text box: " << currrentBox << " confidence: " << probs[indexes[i]] << "\n"; |
|
|
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_PLAIN, 1, 1, &baseLine); |
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height); |
|
rectangle(src, Point(currrentBox.x, yLeftBottom - labelSize.height), |
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED); |
|
|
|
putText(src, label, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA); |
|
} |
|
else |
|
rectangle(src, groups[i], Scalar( 255 ), 3, 8 ); |
|
} |
|
} |
|
|
|
} |
|
|
|
int main(int argc, const char * argv[]) |
|
{ |
|
if (argc < 2) |
|
{ |
|
std::cout << getHelpStr(argv[0]); |
|
std::cout << "Insufiecient parameters. Aborting!" << std::endl; |
|
exit(1); |
|
} |
|
|
|
const std::string modelArch = "textbox.prototxt"; |
|
const std::string moddelWeights = "TextBoxes_icdar13.caffemodel"; |
|
|
|
if (!fileExists(modelArch) || !fileExists(moddelWeights)) |
|
{ |
|
std::cout << getHelpStr(argv[0]); |
|
std::cout << "Model files not found in the current directory. Aborting!" << std::endl; |
|
exit(1); |
|
} |
|
|
|
Mat image = imread(String(argv[1]), IMREAD_COLOR); |
|
|
|
std::cout << "Starting Text Box Demo" << std::endl; |
|
Ptr<text::TextDetectorCNN> textSpotter = |
|
text::TextDetectorCNN::create(modelArch, moddelWeights); |
|
|
|
std::vector<Rect> bbox; |
|
std::vector<float> outProbabillities; |
|
textSpotter->detect(image, bbox, outProbabillities); |
|
|
|
std::vector<int> indexes; |
|
cv::dnn::NMSBoxes(bbox, outProbabillities, 0.3f, 0.4f, indexes); |
|
|
|
textbox_draw(image, bbox, outProbabillities, indexes); |
|
|
|
imshow("TextBox Demo",image); |
|
std::cout << "Done!" << std::endl << std::endl; |
|
std::cout << "Press any key to exit." << std::endl << std::endl; |
|
waitKey(); |
|
return 0; |
|
}
|
|
|