You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.6 KiB
122 lines
4.6 KiB
#include <opencv2/text.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/dnn.hpp> |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
namespace |
|
{ |
|
void printHelpStr(const string& progFname) |
|
{ |
|
cout << " Demo of text recognition CNN for text detection." << endl |
|
<< " Max Jaderberg et al.: Reading Text in the Wild with Convolutional Neural Networks, IJCV 2015"<<endl<<endl |
|
<< " Usage: " << progFname << " <output_file> <input_image>" << endl |
|
<< " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"<<endl |
|
<< " must be in the current directory. See the documentation of text::TextDetectorCNN class to get download links." << endl |
|
<< " Obtaining text recognition Caffe Model files in linux shell:" << endl |
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg.caffemodel" << endl |
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_deploy.prototxt" << endl |
|
<< " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_labels.txt" <<endl << endl; |
|
} |
|
|
|
bool fileExists (const string& filename) |
|
{ |
|
ifstream f(filename.c_str()); |
|
return f.good(); |
|
} |
|
|
|
void textbox_draw(Mat src, std::vector<Rect>& groups, std::vector<float>& probs, std::vector<int>& indexes) |
|
{ |
|
for (size_t i = 0; i < indexes.size(); i++) |
|
{ |
|
if (src.type() == CV_8UC3) |
|
{ |
|
Rect currrentBox = groups[indexes[i]]; |
|
rectangle(src, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA); |
|
String label = format("%.2f", probs[indexes[i]]); |
|
std::cout << "text box: " << currrentBox << " confidence: " << probs[indexes[i]] << "\n"; |
|
|
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_PLAIN, 1, 1, &baseLine); |
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height); |
|
rectangle(src, Point(currrentBox.x, yLeftBottom - labelSize.height), |
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED); |
|
|
|
putText(src, label, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA); |
|
} |
|
else |
|
rectangle(src, groups[i], Scalar( 255 ), 3, 8 ); |
|
} |
|
} |
|
|
|
} |
|
|
|
int main(int argc, const char * argv[]) |
|
{ |
|
if (argc < 2) |
|
{ |
|
printHelpStr(argv[0]); |
|
cout << "Insufiecient parameters. Aborting!" << endl; |
|
exit(1); |
|
} |
|
|
|
const string modelArch = "textbox.prototxt"; |
|
const string moddelWeights = "TextBoxes_icdar13.caffemodel"; |
|
|
|
if (!fileExists(modelArch) || !fileExists(moddelWeights)) |
|
{ |
|
printHelpStr(argv[0]); |
|
cout << "Model files not found in the current directory. Aborting!" << endl; |
|
exit(1); |
|
} |
|
|
|
Mat image = imread(String(argv[1]), IMREAD_COLOR); |
|
|
|
cout << "Starting Text Box Demo" << endl; |
|
Ptr<text::TextDetectorCNN> textSpotter = |
|
text::TextDetectorCNN::create(modelArch, moddelWeights); |
|
|
|
vector<Rect> bbox; |
|
vector<float> outProbabillities; |
|
textSpotter->detect(image, bbox, outProbabillities); |
|
std::vector<int> indexes; |
|
cv::dnn::NMSBoxes(bbox, outProbabillities, 0.4f, 0.5f, indexes); |
|
|
|
Mat image_copy = image.clone(); |
|
textbox_draw(image_copy, bbox, outProbabillities, indexes); |
|
imshow("Text detection", image_copy); |
|
image_copy = image.clone(); |
|
|
|
Ptr<text::OCRHolisticWordRecognizer> wordSpotter = |
|
text::OCRHolisticWordRecognizer::create("dictnet_vgg_deploy.prototxt", "dictnet_vgg.caffemodel", "dictnet_vgg_labels.txt"); |
|
|
|
for(size_t i = 0; i < indexes.size(); i++) |
|
{ |
|
Mat wordImg; |
|
cvtColor(image(bbox[indexes[i]]), wordImg, COLOR_BGR2GRAY); |
|
string word; |
|
vector<float> confs; |
|
wordSpotter->run(wordImg, word, NULL, NULL, &confs); |
|
|
|
Rect currrentBox = bbox[indexes[i]]; |
|
rectangle(image_copy, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA); |
|
|
|
int baseLine = 0; |
|
Size labelSize = getTextSize(word, FONT_HERSHEY_PLAIN, 1, 1, &baseLine); |
|
int yLeftBottom = std::max(currrentBox.y, labelSize.height); |
|
rectangle(image_copy, Point(currrentBox.x, yLeftBottom - labelSize.height), |
|
Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED); |
|
|
|
putText(image_copy, word, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA); |
|
|
|
} |
|
imshow("Text recognition", image_copy); |
|
cout << "Recognition finished. Press any key to exit.\n"; |
|
waitKey(); |
|
return 0; |
|
}
|
|
|