Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

387 lines
11 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "perf_precomp.hpp"
namespace opencv_test { namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
: ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor),
onlySemisphere(_onlySemisphere)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f / (screenVec.x * screenVec.x +
screenVec.y * screenVec.y + 1.f);
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p, onlySemisphere);
if (d < 0.000001f)
{
float depth = std::sqrt(t * t * xyt);
pix = depth * depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
bool onlySemisphere;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
virtual Mat depth(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct SemisphereScene : Scene
{
const int framesPerCycle = 72;
const float nCycles = 0.25f;
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
Size frameSize;
Matx33f intr;
float depthFactor;
bool onlySemisphere;
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
{ }
static float map(Point3f p, bool onlySemisphere)
{
float plane = p.y + 0.5f;
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
float sphereRadius = 0.5f;
float sphere = (float)cv::norm(spherePose) - sphereRadius;
float sphereMinusBox = sphere;
float subSphereRadius = 0.05f;
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
float res;
if (!onlySemisphere)
res = min({ sphereMinusBox, subSphere, plane });
else
res = sphereMinusBox;
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for (int i = 0; i < framesPerCycle * nCycles; i++)
{
float angle = (float)(CV_2PI * i / framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
startPose.translation()[1],
startPose.translation()[2] * cos(angle)));
poses.push_back(pose);
}
return poses;
}
};
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
{
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
}
// this is a temporary solution
// ----------------------------
typedef cv::Vec4f ptype;
typedef cv::Mat_< ptype > Points;
typedef Points Normals;
typedef Size2i Size;
template<int p>
inline float specPow(float x)
{
if (p % 2 == 0)
{
float v = specPow<p / 2>(x);
return v * v;
}
else
{
float v = specPow<(p - 1) / 2>(x);
return v * v * x;
}
}
template<>
inline float specPow<0>(float /*x*/)
{
return 1.f;
}
template<>
inline float specPow<1>(float x)
{
return x;
}
inline cv::Vec3f fromPtype(const ptype& x)
{
return cv::Vec3f(x[0], x[1], x[2]);
}
inline Point3f normalize(const Vec3f& v)
{
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return v * (nv ? 1. / nv : 0.);
}
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
{
Size sz = _points.size();
image.create(sz, CV_8UC4);
Points points = _points.getMat();
Normals normals = _normals.getMat();
Mat_<Vec4b> img = image.getMat();
Range range(0, sz.height);
const int nstripes = -1;
parallel_for_(range, [&](const Range&)
{
for (int y = range.start; y < range.end; y++)
{
Vec4b* imgRow = img[y];
const ptype* ptsRow = points[y];
const ptype* nrmRow = normals[y];
for (int x = 0; x < sz.width; x++)
{
Point3f p = fromPtype(ptsRow[x]);
Point3f n = fromPtype(nrmRow[x]);
Vec4b color;
if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z) )
{
color = Vec4b(0, 32, 0, 0);
}
else
{
const float Ka = 0.3f; //ambient coeff
const float Kd = 0.5f; //diffuse coeff
const float Ks = 0.2f; //specular coeff
const int sp = 20; //specular power
const float Ax = 1.f; //ambient color, can be RGB
const float Dx = 1.f; //diffuse color, can be RGB
const float Sx = 1.f; //specular color, can be RGB
const float Lx = 1.f; //light color
Point3f l = normalize(lightPose.translation() - Vec3f(p));
Point3f v = normalize(-Vec3f(p));
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l));
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
color = Vec4b(ix, ix, ix, 0);
}
imgRow[x] = color;
}
}
}, nstripes);
}
// ----------------------------
class Settings
{
public:
Ptr<kinfu::Params> _params;
Ptr<kinfu::Volume> volume;
Ptr<Scene> scene;
std::vector<Affine3f> poses;
Settings(bool useHashTSDF)
{
if (useHashTSDF)
_params = kinfu::Params::hashTSDFParams(true);
else
_params = kinfu::Params::coarseParams();
volume = kinfu::makeVolume(_params->volumeType, _params->voxelSize, _params->volumePose.matrix,
_params->raycast_step_factor, _params->tsdf_trunc_dist, _params->tsdf_max_weight,
_params->truncateThreshold, _params->volumeDims);
scene = Scene::create(_params->frameSize, _params->intr, _params->depthFactor, true);
poses = scene->getPoses();
}
};
void displayImage(Mat depth, UMat _points, UMat _normals, float depthFactor, Vec3f lightPose)
{
Mat points, normals, image;
AccessFlag af = ACCESS_READ;
normals = _normals.getMat(af);
points = _points.getMat(af);
patchNaNs(points);
imshow("depth", depth * (1.f / depthFactor / 4.f));
renderPointsNormals(points, normals, image, lightPose);
imshow("render", image);
waitKey(2000);
}
static const bool display = false;
PERF_TEST(Perf_TSDF, integrate)
{
Settings settings(false);
for (size_t i = 0; i < settings.poses.size(); i++)
{
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
startTimer();
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
stopTimer();
depth.release();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_TSDF, raycast)
{
Settings settings(false);
for (size_t i = 0; i < settings.poses.size(); i++)
{
UMat _points, _normals;
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
startTimer();
settings.volume->raycast(pose, settings._params->intr, settings._params->frameSize, _points, _normals);
stopTimer();
if (display)
displayImage(depth, _points, _normals, settings._params->depthFactor, settings._params->lightPose);
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_HashTSDF, integrate)
{
Settings settings(true);
for (size_t i = 0; i < settings.poses.size(); i++)
{
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
startTimer();
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
stopTimer();
depth.release();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_HashTSDF, raycast)
{
Settings settings(true);
for (size_t i = 0; i < settings.poses.size(); i++)
{
UMat _points, _normals;
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
startTimer();
settings.volume->raycast(pose, settings._params->intr, settings._params->frameSize, _points, _normals);
stopTimer();
if (display)
displayImage(depth, _points, _normals, settings._params->depthFactor, settings._params->lightPose);
}
SANITY_CHECK_NOTHING();
}
}} // namespace