You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
353 lines
12 KiB
353 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static string getDataDir() { return TS::ptr()->get_data_path(); } |
|
|
|
static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; } |
|
|
|
static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; } |
|
|
|
static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; } |
|
|
|
static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } |
|
|
|
static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } |
|
|
|
static float calcRMSE(Mat flow1, Mat flow2) |
|
{ |
|
float sum = 0; |
|
int counter = 0; |
|
const int rows = flow1.rows; |
|
const int cols = flow1.cols; |
|
|
|
for (int y = 0; y < rows; ++y) |
|
{ |
|
for (int x = 0; x < cols; ++x) |
|
{ |
|
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x); |
|
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x); |
|
|
|
float u1 = flow1_at_point[0]; |
|
float v1 = flow1_at_point[1]; |
|
float u2 = flow2_at_point[0]; |
|
float v2 = flow2_at_point[1]; |
|
|
|
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) |
|
{ |
|
sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2); |
|
counter++; |
|
} |
|
} |
|
} |
|
return (float)sqrt(sum / (1e-9 + counter)); |
|
} |
|
static float calcRMSE(vector<Point2f> prevPts, vector<Point2f> currPts, Mat flow) |
|
{ |
|
vector<float> ee; |
|
for (unsigned int n = 0; n < prevPts.size(); n++) |
|
{ |
|
Point2f gtFlow = flow.at<Point2f>(prevPts[n]); |
|
if (isFlowCorrect(gtFlow.x) && isFlowCorrect(gtFlow.y)) |
|
{ |
|
Point2f diffFlow = (currPts[n] - prevPts[n]) - gtFlow; |
|
ee.push_back(sqrt(diffFlow.x * diffFlow.x + diffFlow.y * diffFlow.y)); |
|
} |
|
} |
|
return static_cast<float>(mean(ee).val[0]); |
|
} |
|
static float calcAvgEPE(vector< pair<Point2i, Point2i> > corr, Mat flow) |
|
{ |
|
double sum = 0; |
|
int counter = 0; |
|
|
|
for (size_t i = 0; i < corr.size(); ++i) |
|
{ |
|
Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first); |
|
Vec2f flow2_at_point = flow.at<Vec2f>(corr[i].first.y, corr[i].first.x); |
|
|
|
double u1 = (double)flow1_at_point[0]; |
|
double v1 = (double)flow1_at_point[1]; |
|
double u2 = (double)flow2_at_point[0]; |
|
double v2 = (double)flow2_at_point[1]; |
|
|
|
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) |
|
{ |
|
sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2)); |
|
counter++; |
|
} |
|
} |
|
|
|
return (float)(sum / counter); |
|
} |
|
|
|
bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT) |
|
{ |
|
string frame1_path = getRubberWhaleFrame1(); |
|
string frame2_path = getRubberWhaleFrame2(); |
|
string gt_flow_path = getRubberWhaleGroundTruth(); |
|
// removing space may be an issue on windows machines |
|
frame1_path.erase(std::remove_if(frame1_path.begin(), frame1_path.end(), isspace), frame1_path.end()); |
|
frame2_path.erase(std::remove_if(frame2_path.begin(), frame2_path.end(), isspace), frame2_path.end()); |
|
gt_flow_path.erase(std::remove_if(gt_flow_path.begin(), gt_flow_path.end(), isspace), gt_flow_path.end()); |
|
|
|
dst_frame_1 = imread(frame1_path); |
|
dst_frame_2 = imread(frame2_path); |
|
dst_GT = readOpticalFlow(gt_flow_path); |
|
|
|
if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty()) |
|
return false; |
|
else |
|
return true; |
|
} |
|
|
|
|
|
TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
float target_RMSE = 0.37f; |
|
|
|
Mat flow; |
|
Ptr<DenseOpticalFlow> algo; |
|
algo = createOptFlow_SimpleFlow(); |
|
algo->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE); |
|
} |
|
|
|
TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
float target_RMSE = 0.35f; |
|
cvtColor(frame1, frame1, COLOR_BGR2GRAY); |
|
cvtColor(frame2, frame2, COLOR_BGR2GRAY); |
|
|
|
Mat flow; |
|
Ptr<DenseOpticalFlow> algo; |
|
algo = createOptFlow_DeepFlow(); |
|
algo->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE); |
|
} |
|
|
|
TEST(SparseOpticalFlow, ReferenceAccuracy) |
|
{ |
|
// with the following test each invoker class should be tested once |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
vector<Point2f> prevPts, currPts; |
|
for (int r = 0; r < frame1.rows; r+=10) |
|
{ |
|
for (int c = 0; c < frame1.cols; c+=10) |
|
{ |
|
prevPts.push_back(Point2f(static_cast<float>(c), static_cast<float>(r))); |
|
} |
|
} |
|
vector<uchar> status(prevPts.size()); |
|
vector<float> err(prevPts.size()); |
|
Ptr<SparseRLOFOpticalFlow> algo = SparseRLOFOpticalFlow::create(); |
|
algo->setForwardBackward(0.0f); |
|
Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter); |
|
param->supportRegionType = SR_CROSS; |
|
param->useIlluminationModel = true; |
|
param->solverType = ST_BILINEAR; |
|
param->setUseMEstimator(true); |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.3f); |
|
|
|
param->solverType = ST_STANDART; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.34f); |
|
|
|
param->useIlluminationModel = false; |
|
param->solverType = ST_BILINEAR; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f); |
|
|
|
param->solverType = ST_STANDART; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f); |
|
|
|
param->setUseMEstimator(false); |
|
param->useIlluminationModel = true; |
|
|
|
param->solverType = ST_BILINEAR; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); |
|
|
|
param->solverType = ST_STANDART; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); |
|
|
|
param->useIlluminationModel = false; |
|
|
|
param->solverType = ST_BILINEAR; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.80f); |
|
|
|
param->solverType = ST_STANDART; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->calc(frame1, frame2, prevPts, currPts, status, err); |
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f); |
|
} |
|
|
|
TEST(DenseOpticalFlow_RLOF, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
Mat flow; |
|
Ptr<DenseRLOFOpticalFlow> algo = DenseRLOFOpticalFlow::create(); |
|
Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter); |
|
param->setUseMEstimator(true); |
|
param->supportRegionType = SR_CROSS; |
|
param->solverType = ST_BILINEAR; |
|
algo->setRLOFOpticalFlowParameter(param); |
|
algo->setForwardBackward(1.0f); |
|
algo->setGridStep(cv::Size(4, 4)); |
|
algo->setInterpolation(INTERP_EPIC); |
|
algo->calc(frame1, frame2, flow); |
|
|
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), 0.46f); |
|
|
|
algo->setInterpolation(INTERP_GEO); |
|
algo->calc(frame1, frame2, flow); |
|
|
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), 0.55f); |
|
|
|
} |
|
|
|
TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
float target_RMSE = 0.52f; |
|
|
|
Mat flow; |
|
Ptr<DenseOpticalFlow> algo; |
|
algo = createOptFlow_SparseToDense(); |
|
algo->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE); |
|
} |
|
|
|
TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
const float target_RMSE = 0.55f; |
|
|
|
Mat flow; |
|
Ptr<DenseOpticalFlow> algo = createOptFlow_PCAFlow(); |
|
algo->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE); |
|
} |
|
|
|
TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
|
|
const Size sz = frame1.size() / 2; |
|
frame1 = frame1(Rect(0, 0, sz.width, sz.height)); |
|
frame2 = frame2(Rect(0, 0, sz.width, sz.height)); |
|
GT = GT(Rect(0, 0, sz.width, sz.height)); |
|
|
|
vector<Mat> img1, img2, gt; |
|
vector< pair<Point2i, Point2i> > corr; |
|
img1.push_back(frame1); |
|
img2.push_back(frame2); |
|
gt.push_back(GT); |
|
|
|
Ptr< GPCForest<5> > forest = GPCForest<5>::create(); |
|
forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false)); |
|
forest->findCorrespondences(frame1, frame2, corr); |
|
|
|
ASSERT_LE(7500U, corr.size()); |
|
ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); |
|
} |
|
|
|
TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
|
|
const Size sz = frame1.size() / 2; |
|
frame1 = frame1(Rect(0, 0, sz.width, sz.height)); |
|
frame2 = frame2(Rect(0, 0, sz.width, sz.height)); |
|
GT = GT(Rect(0, 0, sz.width, sz.height)); |
|
|
|
vector<Mat> img1, img2, gt; |
|
vector< pair<Point2i, Point2i> > corr; |
|
img1.push_back(frame1); |
|
img2.push_back(frame2); |
|
gt.push_back(GT); |
|
|
|
Ptr< GPCForest<5> > forest = GPCForest<5>::create(); |
|
forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false)); |
|
forest->findCorrespondences(frame1, frame2, corr); |
|
|
|
ASSERT_LE(7000U, corr.size()); |
|
ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); |
|
} |
|
|
|
|
|
}} // namespace
|
|
|