You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
704 lines
21 KiB
704 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "featureColorName.cpp" |
|
#include <complex> |
|
|
|
/*--------------------------- |
|
| TrackerKCFModel |
|
|---------------------------*/ |
|
namespace cv{ |
|
/** |
|
* \brief Implementation of TrackerModel for MIL algorithm |
|
*/ |
|
class TrackerKCFModel : public TrackerModel{ |
|
public: |
|
TrackerKCFModel(TrackerKCF::Params /*params*/){} |
|
~TrackerKCFModel(){} |
|
protected: |
|
void modelEstimationImpl( const std::vector<Mat>& /*responses*/ ){} |
|
void modelUpdateImpl(){} |
|
}; |
|
} /* namespace cv */ |
|
|
|
|
|
/*--------------------------- |
|
| TrackerKCF |
|
|---------------------------*/ |
|
namespace cv{ |
|
|
|
/* |
|
* Prototype |
|
*/ |
|
class TrackerKCFImpl : public TrackerKCF { |
|
public: |
|
TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() ); |
|
void read( const FileNode& /*fn*/ ); |
|
void write( FileStorage& /*fs*/ ) const; |
|
|
|
protected: |
|
/* |
|
* basic functions and vars |
|
*/ |
|
bool initImpl( const Mat& /*image*/, const Rect2d& boundingBox ); |
|
bool updateImpl( const Mat& image, Rect2d& boundingBox ); |
|
|
|
TrackerKCF::Params params; |
|
|
|
/* |
|
* KCF functions and vars |
|
*/ |
|
void createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const; |
|
void inline fft2(const Mat src, std::vector<Mat> & dest) const; |
|
void inline fft2(const Mat src, Mat & dest) const; |
|
void inline ifft2(const Mat src, Mat & dest) const ; |
|
void inline pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB=false) const; |
|
void inline sumChannels(std::vector<Mat> src, Mat & dest) const; |
|
void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx,double pca_rate, int compressed_sz) const; |
|
void inline compress(const Mat _proj_mtx, const Mat src, Mat & dest) const; |
|
bool getSubWindow(const Mat img, const Rect roi, Mat& patch) const; |
|
void extractCN(Mat _patch, Mat & cnFeatures) const; |
|
void denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const; |
|
void calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const; |
|
void calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const; |
|
|
|
void shiftRows(Mat& mat) const; |
|
void shiftRows(Mat& mat, int n) const; |
|
void shiftCols(Mat& mat, int n) const; |
|
|
|
private: |
|
double output_sigma; |
|
Rect2d roi; |
|
Mat hann; //hann window filter |
|
|
|
Mat y,yf; // training response and its FFT |
|
Mat x,xf; // observation and its FFT |
|
Mat k,kf; // dense gaussian kernel and its FFT |
|
Mat kf_lambda; // kf+lambda |
|
Mat new_alphaf, alphaf; // training coefficients |
|
Mat new_alphaf_den, alphaf_den; // for splitted training coefficients |
|
Mat z, new_z; // model |
|
Mat response; // detection result |
|
Mat old_cov_mtx, proj_mtx; // for feature compression |
|
|
|
bool resizeImage; // resize the image whenever needed and the patch size is large |
|
|
|
int frame; |
|
}; |
|
|
|
/* |
|
* Constructor |
|
*/ |
|
Ptr<TrackerKCF> TrackerKCF::createTracker(const TrackerKCF::Params ¶meters){ |
|
return Ptr<TrackerKCFImpl>(new TrackerKCFImpl(parameters)); |
|
} |
|
TrackerKCFImpl::TrackerKCFImpl( const TrackerKCF::Params ¶meters ) : |
|
params( parameters ) |
|
{ |
|
isInit = false; |
|
resizeImage = false; |
|
|
|
CV_Assert(params.descriptor == GRAY || params.descriptor == CN /*|| params.descriptor == CN2*/); |
|
} |
|
|
|
void TrackerKCFImpl::read( const cv::FileNode& fn ){ |
|
params.read( fn ); |
|
} |
|
|
|
void TrackerKCFImpl::write( cv::FileStorage& fs ) const{ |
|
params.write( fs ); |
|
} |
|
|
|
/* |
|
* Initialization: |
|
* - creating hann window filter |
|
* - ROI padding |
|
* - creating a gaussian response for the training ground-truth |
|
* - perform FFT to the gaussian response |
|
*/ |
|
bool TrackerKCFImpl::initImpl( const Mat& /*image*/, const Rect2d& boundingBox ){ |
|
frame=0; |
|
roi = boundingBox; |
|
|
|
//calclulate output sigma |
|
output_sigma=sqrt(roi.width*roi.height)*params.output_sigma_factor; |
|
output_sigma=-0.5/(output_sigma*output_sigma); |
|
|
|
//resize the ROI whenever needed |
|
if(params.resize && roi.width*roi.height>params.max_patch_size){ |
|
resizeImage=true; |
|
roi.x/=2.0; |
|
roi.y/=2.0; |
|
roi.width/=2.0; |
|
roi.height/=2.0; |
|
} |
|
|
|
// add padding to the roi |
|
roi.x-=roi.width/2; |
|
roi.y-=roi.height/2; |
|
roi.width*=2; |
|
roi.height*=2; |
|
|
|
// initialize the hann window filter |
|
createHanningWindow(hann, roi.size(), CV_64F); |
|
if(params.descriptor==CN){ |
|
Mat layers[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann}; |
|
merge(layers, 10, hann); |
|
} |
|
|
|
// create gaussian response |
|
y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F); |
|
for(unsigned i=0;i<roi.height;i++){ |
|
for(unsigned j=0;j<roi.width;j++){ |
|
y.at<double>(i,j)=(i-roi.height/2+1)*(i-roi.height/2+1)+(j-roi.width/2+1)*(j-roi.width/2+1); |
|
} |
|
} |
|
|
|
y*=(double)output_sigma; |
|
cv::exp(y,y); |
|
|
|
// perform fourier transfor to the gaussian response |
|
fft2(y,yf); |
|
|
|
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params)); |
|
|
|
// TODO: return true only if roi inside the image |
|
return true; |
|
} |
|
|
|
/* |
|
* Main part of the KCF algorithm |
|
*/ |
|
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ |
|
double minVal, maxVal; // min-max response |
|
Point minLoc,maxLoc; // min-max location |
|
Mat zc; |
|
|
|
Mat img=image.clone(); |
|
// check the channels of the input image, grayscale is preferred |
|
CV_Assert(image.channels() == 1 || image.channels() == 3); |
|
|
|
// resize the image whenever needed |
|
if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2)); |
|
|
|
// extract and pre-process the patch |
|
if(!getSubWindow(img,roi, x))return false; |
|
|
|
// detection part |
|
if(frame>0){ |
|
//compute the gaussian kernel |
|
if(params.compressFeature){ |
|
compress(proj_mtx,x,x); |
|
compress(proj_mtx,z,zc); |
|
denseGaussKernel(params.sigma,x,zc,k); |
|
}else{ |
|
denseGaussKernel(params.sigma,x,z,k); |
|
} |
|
|
|
// calculate filter response |
|
if(params.splitCoeff){ |
|
calcResponse(alphaf,alphaf_den,k,response); |
|
}else{ |
|
calcResponse(alphaf,k,response); |
|
} |
|
|
|
// extract the maximum response |
|
minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc ); |
|
roi.x+=(maxLoc.x-roi.width/2+1); |
|
roi.y+=(maxLoc.y-roi.height/2+1); |
|
|
|
// update the bounding box |
|
boundingBox.x=(resizeImage?roi.x*2:roi.x)+boundingBox.width/2; |
|
boundingBox.y=(resizeImage?roi.y*2:roi.y)+boundingBox.height/2; |
|
} |
|
|
|
// extract the patch for learning purpose |
|
if(!getSubWindow(img,roi, x))return false; |
|
|
|
//update the training data |
|
new_z=x.clone(); |
|
if(frame==0){ |
|
z=x.clone(); |
|
}else{ |
|
z=(1.0-params.interp_factor)*z+params.interp_factor*new_z; |
|
} |
|
|
|
if(params.compressFeature){ |
|
// feature compression |
|
updateProjectionMatrix(z,old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size); |
|
compress(proj_mtx,x,x); |
|
} |
|
|
|
// Kernel Regularized Least-Squares, calculate alphas |
|
denseGaussKernel(params.sigma,x,x,k); |
|
|
|
fft2(k,kf); |
|
kf_lambda=kf+params.lambda; |
|
|
|
/* TODO: optimize this element-wise division |
|
* new_alphaf=yf./kf |
|
* z=(a+bi)/(c+di)[(ac+bd)+i(bc-ad)]/(c^2+d^2) |
|
*/ |
|
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols); |
|
std::complex<double> temp; |
|
|
|
if(params.splitCoeff){ |
|
mulSpectrums(yf,kf,new_alphaf,0); |
|
mulSpectrums(kf,kf_lambda,new_alphaf_den,0); |
|
}else{ |
|
for(int i=0;i<yf.rows;i++){ |
|
for(int j=0;j<yf.cols;j++){ |
|
temp=std::complex<double>(yf.at<Vec2d>(i,j)[0],yf.at<Vec2d>(i,j)[1])/(std::complex<double>(kf_lambda.at<Vec2d>(i,j)[0],kf_lambda.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/); |
|
new_alphaf.at<Vec2d >(i,j)[0]=temp.real(); |
|
new_alphaf.at<Vec2d >(i,j)[1]=temp.imag(); |
|
} |
|
} |
|
} |
|
|
|
// update the RLS model |
|
if(frame==0){ |
|
alphaf=new_alphaf.clone(); |
|
if(params.splitCoeff)alphaf_den=new_alphaf_den.clone(); |
|
}else{ |
|
alphaf=(1.0-params.interp_factor)*alphaf+params.interp_factor*new_alphaf; |
|
if(params.splitCoeff)alphaf_den=(1.0-params.interp_factor)*alphaf_den+params.interp_factor*new_alphaf_den; |
|
} |
|
|
|
frame++; |
|
return true; |
|
} |
|
|
|
|
|
/*------------------------------------- |
|
| implementation of the KCF functions |
|
|-------------------------------------*/ |
|
|
|
/* |
|
* hann window filter |
|
*/ |
|
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type)const{ |
|
CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); |
|
|
|
_dst.create(winSize, type); |
|
Mat dst = _dst.getMat(); |
|
|
|
int rows = dst.rows, cols = dst.cols; |
|
|
|
AutoBuffer<double> _wc(cols); |
|
double * const wc = (double *)_wc; |
|
|
|
double coeff0 = 2.0 * CV_PI / (double)(cols - 1), coeff1 = 2.0f * CV_PI / (double)(rows - 1); |
|
for(int j = 0; j < cols; j++) |
|
wc[j] = 0.5 * (1.0 - cos(coeff0 * j)); |
|
|
|
if(dst.depth() == CV_32F) |
|
{ |
|
for(int i = 0; i < rows; i++) |
|
{ |
|
float* dstData = dst.ptr<float>(i); |
|
double wr = 0.5 * (1.0 - cos(coeff1 * i)); |
|
for(int j = 0; j < cols; j++) |
|
dstData[j] = (float)(wr * wc[j]); |
|
} |
|
} |
|
else |
|
{ |
|
for(int i = 0; i < rows; i++) |
|
{ |
|
double* dstData = dst.ptr<double>(i); |
|
double wr = 0.5 * (1.0 - cos(coeff1 * i)); |
|
for(int j = 0; j < cols; j++) |
|
dstData[j] = wr * wc[j]; |
|
} |
|
} |
|
|
|
// perform batch sqrt for SSE performance gains |
|
//cv::sqrt(dst, dst); //matlab do not use the square rooted version |
|
} |
|
|
|
/* |
|
* simplification of fourier transform function in opencv |
|
*/ |
|
void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest)const { |
|
std::vector<Mat> layers(src.channels()); |
|
std::vector<Mat> outputs(src.channels()); |
|
|
|
split(src, layers); |
|
|
|
for(int i=0;i<src.channels();i++){ |
|
dft(layers[i],outputs[i],DFT_COMPLEX_OUTPUT); |
|
} |
|
|
|
merge(outputs,dest); |
|
} |
|
|
|
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest) const{ |
|
std::vector<Mat> layers(src.channels()); |
|
dest.clear(); |
|
dest.resize(src.channels()); |
|
|
|
split(src, layers); |
|
|
|
for(int i=0;i<src.channels();i++){ |
|
dft(layers[i],dest[i],DFT_COMPLEX_OUTPUT); |
|
} |
|
} |
|
|
|
/* |
|
* simplification of inverse fourier transform function in opencv |
|
*/ |
|
void inline TrackerKCFImpl::ifft2(const Mat src, Mat & dest)const { |
|
idft(src,dest,DFT_SCALE+DFT_REAL_OUTPUT); |
|
} |
|
|
|
/* |
|
* Point-wise multiplication of two Multichannel Mat data |
|
*/ |
|
void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const{ |
|
dest.clear(); |
|
dest.resize(src1.size()); |
|
|
|
for(unsigned i=0;i<src1.size();i++){ |
|
mulSpectrums(src1[i], src2[i], dest[i],flags,conjB); |
|
} |
|
} |
|
|
|
/* |
|
* Combines all channels in a multi-channels Mat data into a single channel |
|
*/ |
|
void inline TrackerKCFImpl::sumChannels(std::vector<Mat> src, Mat & dest) const{ |
|
dest=src[0].clone(); |
|
for(unsigned i=1;i<src.size();i++){ |
|
dest+=src[i]; |
|
} |
|
} |
|
|
|
/* |
|
* obtains the projection matrix using PCA |
|
*/ |
|
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx, double pca_rate, int compressed_sz)const{ |
|
CV_Assert(compressed_sz<=src.channels()); |
|
|
|
// compute average |
|
std::vector<Mat> layers(src.channels()); |
|
std::vector<Scalar> average(src.channels()); |
|
split(src,layers); |
|
|
|
for (int i=0;i<src.channels();i++){ |
|
average[i]=mean(layers[i]); |
|
layers[i]-=average[i]; |
|
} |
|
|
|
// calc covariance matrix |
|
Mat data,new_cov; |
|
merge(layers,data); |
|
data=data.reshape(1,src.rows*src.cols); |
|
|
|
new_cov=1.0/(double)(src.rows*src.cols-1)*(data.t()*data); |
|
if(old_cov.rows==0)old_cov=new_cov.clone(); |
|
|
|
// calc PCA |
|
Mat w, u, vt; |
|
SVD::compute((1.0-pca_rate)*old_cov+pca_rate*new_cov, w, u, vt); |
|
|
|
// extract the projection matrix |
|
_proj_mtx=u(Rect(0,0,compressed_sz,src.channels())).clone(); |
|
Mat proj_vars=Mat::eye(compressed_sz,compressed_sz,_proj_mtx.type()); |
|
for(int i=0;i<compressed_sz;i++){ |
|
proj_vars.at<double>(i,i)=w.at<double>(i); |
|
} |
|
|
|
// update the covariance matrix |
|
old_cov=(1.0-pca_rate)*old_cov+pca_rate*_proj_mtx*proj_vars*_proj_mtx.t(); |
|
} |
|
|
|
/* |
|
* compress the features |
|
*/ |
|
void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest)const{ |
|
Mat data=src.reshape(1,src.rows*src.cols); |
|
Mat compressed=data*_proj_mtx; |
|
dest=compressed.reshape(_proj_mtx.cols,src.rows).clone(); |
|
} |
|
|
|
/* |
|
* obtain the patch and apply hann window filter to it |
|
*/ |
|
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const{ |
|
|
|
Rect region=_roi; |
|
|
|
// return false if roi is outside the image |
|
if((_roi.x+_roi.width<0) |
|
||(_roi.y+_roi.height<0) |
|
||(_roi.x>=img.cols) |
|
||(_roi.y>=img.rows) |
|
)return false; |
|
|
|
// extract patch inside the image |
|
if(_roi.x<0){region.x=0;region.width+=_roi.x;} |
|
if(_roi.y<0){region.y=0;region.height+=_roi.y;} |
|
if(_roi.x+_roi.width>img.cols)region.width=img.cols-_roi.x; |
|
if(_roi.y+_roi.height>img.rows)region.height=img.rows-_roi.y; |
|
if(region.width>img.cols)region.width=img.cols; |
|
if(region.height>img.rows)region.height=img.rows; |
|
|
|
patch=img(region).clone(); |
|
|
|
// add some padding to compensate when the patch is outside image border |
|
int addTop,addBottom, addLeft, addRight; |
|
addTop=region.y-_roi.y; |
|
addBottom=(_roi.height+_roi.y>img.rows?_roi.height+_roi.y-img.rows:0); |
|
addLeft=region.x-_roi.x; |
|
addRight=(_roi.width+_roi.x>img.cols?_roi.width+_roi.x-img.cols:0); |
|
|
|
copyMakeBorder(patch,patch,addTop,addBottom,addLeft,addRight,BORDER_REPLICATE); |
|
if(patch.rows==0 || patch.cols==0)return false; |
|
|
|
// extract the desired descriptors |
|
switch(params.descriptor){ |
|
case GRAY: |
|
if(img.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY); |
|
patch.convertTo(patch,CV_64F); |
|
patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5 |
|
break; |
|
case CN: |
|
CV_Assert(img.channels() == 3); |
|
extractCN(patch,patch); |
|
break; |
|
case CN2: |
|
if(patch.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY); |
|
break; |
|
} |
|
|
|
patch=patch.mul(hann); // hann window filter |
|
|
|
return true; |
|
|
|
} |
|
|
|
/* Convert BGR to ColorNames |
|
*/ |
|
void TrackerKCFImpl::extractCN(Mat _patch, Mat & cnFeatures) const { |
|
Vec3b & pixel = _patch.at<Vec3b>(0,0); |
|
unsigned index; |
|
|
|
Mat temp = Mat::zeros(_patch.rows,_patch.cols,CV_64FC(10)); |
|
|
|
for(int i=0;i<_patch.rows;i++){ |
|
for(int j=0;j<_patch.cols;j++){ |
|
pixel=_patch.at<Vec3b>(i,j); |
|
index=(unsigned)(floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8)); |
|
|
|
//copy the values |
|
for(int _k=0;_k<10;_k++){ |
|
temp.at<Vec<double,10> >(i,j)[_k]=ColorNames[index][_k]; |
|
} |
|
} |
|
} |
|
|
|
cnFeatures=temp.clone(); |
|
} |
|
|
|
/* |
|
* dense gauss kernel function |
|
*/ |
|
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k)const{ |
|
std::vector<Mat> _xf,_yf,xyf_v; |
|
Mat xy,xyf; |
|
double normX, normY; |
|
|
|
fft2(_x,_xf); |
|
fft2(_y,_yf); |
|
|
|
normX=norm(_x); |
|
normX*=normX; |
|
normY=norm(_y); |
|
normY*=normY; |
|
|
|
pixelWiseMult(_xf,_yf,xyf_v,0,true); |
|
sumChannels(xyf_v,xyf); |
|
ifft2(xyf,xyf); |
|
|
|
if(params.wrapKernel){ |
|
shiftRows(xyf, _x.rows/2); |
|
shiftCols(xyf, _x.cols/2); |
|
} |
|
|
|
//(xx + yy - 2 * xy) / numel(x) |
|
xy=(normX+normY-2*xyf)/(_x.rows*_x.cols*_x.channels()); |
|
|
|
// TODO: check wether we really need thresholding or not |
|
//threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x)) |
|
for(int i=0;i<xy.rows;i++){ |
|
for(int j=0;j<xy.cols;j++){ |
|
if(xy.at<double>(i,j)<0.0)xy.at<double>(i,j)=0.0; |
|
} |
|
} |
|
|
|
double sig=-1.0/(sigma*sigma); |
|
xy=sig*xy; |
|
exp(xy,_k); |
|
|
|
} |
|
|
|
/* CIRCULAR SHIFT Function |
|
* http://stackoverflow.com/questions/10420454/shift-like-matlab-function-rows-or-columns-of-a-matrix-in-opencv |
|
*/ |
|
// circular shift one row from up to down |
|
void TrackerKCFImpl::shiftRows(Mat& mat) const { |
|
|
|
Mat temp; |
|
Mat m; |
|
int _k = (mat.rows-1); |
|
mat.row(_k).copyTo(temp); |
|
for(; _k > 0 ; _k-- ) { |
|
m = mat.row(_k); |
|
mat.row(_k-1).copyTo(m); |
|
} |
|
m = mat.row(0); |
|
temp.copyTo(m); |
|
|
|
} |
|
|
|
// circular shift n rows from up to down if n > 0, -n rows from down to up if n < 0 |
|
void TrackerKCFImpl::shiftRows(Mat& mat, int n) const { |
|
|
|
if( n < 0 ) { |
|
|
|
n = -n; |
|
flip(mat,mat,0); |
|
for(int _k=0; _k < n;_k++) { |
|
shiftRows(mat); |
|
} |
|
flip(mat,mat,0); |
|
|
|
} else { |
|
|
|
for(int _k=0; _k < n;_k++) { |
|
shiftRows(mat); |
|
} |
|
} |
|
|
|
} |
|
|
|
//circular shift n columns from left to right if n > 0, -n columns from right to left if n < 0 |
|
void TrackerKCFImpl::shiftCols(Mat& mat, int n) const { |
|
|
|
if(n < 0){ |
|
|
|
n = -n; |
|
flip(mat,mat,1); |
|
transpose(mat,mat); |
|
shiftRows(mat,n); |
|
transpose(mat,mat); |
|
flip(mat,mat,1); |
|
|
|
} else { |
|
|
|
transpose(mat,mat); |
|
shiftRows(mat,n); |
|
transpose(mat,mat); |
|
} |
|
} |
|
|
|
/* |
|
* calculate the detection response |
|
*/ |
|
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response)const { |
|
//alpha f--> 2channels ; k --> 1 channel; |
|
Mat _kf; |
|
fft2(_k,_kf); |
|
Mat spec; |
|
mulSpectrums(_alphaf,_kf,spec,0,false); |
|
ifft2(spec,_response); |
|
} |
|
|
|
/* |
|
* calculate the detection response for splitted form |
|
*/ |
|
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response)const { |
|
Mat _kf; |
|
fft2(_k,_kf); |
|
Mat spec; |
|
Mat spec2=Mat_<Vec2d >(_k.rows, _k.cols); |
|
std::complex<double> temp; |
|
|
|
mulSpectrums(_alphaf,_kf,spec,0,false); |
|
|
|
for(int i=0;i<_k.rows;i++){ |
|
for(int j=0;j<_k.cols;j++){ |
|
temp=std::complex<double>(spec.at<Vec2d>(i,j)[0],spec.at<Vec2d>(i,j)[1])/(std::complex<double>(_alphaf_den.at<Vec2d>(i,j)[0],_alphaf_den.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/); |
|
spec2.at<Vec2d >(i,j)[0]=temp.real(); |
|
spec2.at<Vec2d >(i,j)[1]=temp.imag(); |
|
} |
|
} |
|
|
|
ifft2(spec2,_response); |
|
} |
|
/*----------------------------------------------------------------------*/ |
|
|
|
/* |
|
* Parameters |
|
*/ |
|
TrackerKCF::Params::Params(){ |
|
sigma=0.2; |
|
lambda=0.01; |
|
interp_factor=0.075; |
|
output_sigma_factor=1.0/16.0; |
|
resize=true; |
|
max_patch_size=80*80; |
|
descriptor=CN; |
|
splitCoeff=true; |
|
wrapKernel=false; |
|
|
|
//feature compression |
|
compressFeature=true; |
|
compressed_size=2; |
|
pca_learning_rate=0.15; |
|
} |
|
|
|
void TrackerKCF::Params::read( const cv::FileNode& /*fn*/ ){} |
|
|
|
void TrackerKCF::Params::write( cv::FileStorage& /*fs*/ ) const{} |
|
|
|
} /* namespace cv */
|
|
|