You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
518 lines
19 KiB
518 lines
19 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// Copyright Amir Hassan (kallaballa) <amir@viel-zu.org> |
|
|
|
#include <opencv2/v4d/v4d.hpp> |
|
|
|
#include <opencv2/features2d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/optflow.hpp> |
|
#include <opencv2/core/ocl.hpp> |
|
|
|
#include <cmath> |
|
#include <vector> |
|
#include <set> |
|
#include <string> |
|
#include <random> |
|
|
|
using std::cerr; |
|
using std::endl; |
|
using std::vector; |
|
using std::string; |
|
|
|
/* Demo parameters */ |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
constexpr long unsigned int WIDTH = 1280; |
|
constexpr long unsigned int HEIGHT = 720; |
|
#else |
|
constexpr long unsigned int WIDTH = 960; |
|
constexpr long unsigned int HEIGHT = 960; |
|
#endif |
|
const unsigned long DIAG = hypot(double(WIDTH), double(HEIGHT)); |
|
#ifndef __EMSCRIPTEN__ |
|
constexpr const char* OUTPUT_FILENAME = "../optflow-demo.mkv"; |
|
#endif |
|
constexpr bool OFFSCREEN = false; |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
//the second window |
|
static cv::Ptr<cv::v4d::V4D> miniWindow; |
|
#endif |
|
|
|
/* Visualization parameters */ |
|
|
|
//How the background will be visualized |
|
enum BackgroundModes { |
|
GREY, |
|
COLOR, |
|
VALUE, |
|
BLACK |
|
}; |
|
|
|
//Post-processing modes for the foreground |
|
enum PostProcModes { |
|
GLOW, |
|
BLOOM, |
|
DISABLED |
|
}; |
|
|
|
// Generate the foreground at this scale. |
|
static float fg_scale = 0.5f; |
|
// On every frame the foreground loses on brightness. Specifies the loss in percent. |
|
#ifndef __EMSCRIPTEN__ |
|
static float fg_loss = 2.5; |
|
#else |
|
static float fg_loss = 10.0; |
|
#endif |
|
//Convert the background to greyscale |
|
static BackgroundModes background_mode = GREY; |
|
// Peak thresholds for the scene change detection. Lowering them makes the detection more sensitive but |
|
// the default should be fine. |
|
static float scene_change_thresh = 0.29f; |
|
static float scene_change_thresh_diff = 0.1f; |
|
// The theoretical maximum number of points to track which is scaled by the density of detected points |
|
// and therefor is usually much smaller. |
|
#ifndef __EMSCRIPTEN__ |
|
static int max_points = 250000; |
|
#else |
|
static int max_points = 100000; |
|
#endif |
|
// How many of the tracked points to lose intentionally, in percent. |
|
#ifndef __EMSCRIPTEN__ |
|
static float point_loss = 25; |
|
#else |
|
static float point_loss = 10; |
|
#endif |
|
// The theoretical maximum size of the drawing stroke which is scaled by the area of the convex hull |
|
// of tracked points and therefor is usually much smaller. |
|
static int max_stroke = 10; |
|
|
|
// Red, green, blue and alpha. All from 0.0f to 1.0f |
|
static float effect_color[4] = {1.0f, 0.75f, 0.4f, 1.0f}; |
|
//display on-screen FPS |
|
static bool show_fps = true; |
|
//Stretch frame buffer to window size |
|
static bool stretch = false; |
|
//The post processing mode |
|
#ifndef __EMSCRIPTEN__ |
|
static PostProcModes post_proc_mode = GLOW; |
|
#else |
|
static PostProcModes post_proc_mode = DISABLED; |
|
#endif |
|
// Intensity of glow or bloom defined by kernel size. The default scales with the image diagonal. |
|
static int glow_kernel_size = std::max(int(DIAG / 100 % 2 == 0 ? DIAG / 100 + 1 : DIAG / 100), 1); |
|
//The lightness selection threshold |
|
static int bloom_thresh = 210; |
|
//The intensity of the bloom filter |
|
static float bloom_gain = 3; |
|
|
|
using namespace cv::v4d; |
|
|
|
|
|
//Uses background subtraction to generate a "motion mask" |
|
static void prepare_motion_mask(const cv::UMat& srcGrey, cv::UMat& motionMaskGrey) { |
|
static thread_local cv::Ptr<cv::BackgroundSubtractor> bg_subtrator = cv::createBackgroundSubtractorMOG2(100, 16.0, false); |
|
static thread_local int morph_size = 1; |
|
static thread_local cv::Mat element = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2 * morph_size + 1, 2 * morph_size + 1), cv::Point(morph_size, morph_size)); |
|
|
|
bg_subtrator->apply(srcGrey, motionMaskGrey); |
|
//Surpress speckles |
|
cv::morphologyEx(motionMaskGrey, motionMaskGrey, cv::MORPH_OPEN, element, cv::Point(element.cols >> 1, element.rows >> 1), 2, cv::BORDER_CONSTANT, cv::morphologyDefaultBorderValue()); |
|
} |
|
|
|
//Detect points to track |
|
static void detect_points(const cv::UMat& srcMotionMaskGrey, vector<cv::Point2f>& points) { |
|
static thread_local cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create(1, false); |
|
static thread_local vector<cv::KeyPoint> tmpKeyPoints; |
|
|
|
tmpKeyPoints.clear(); |
|
detector->detect(srcMotionMaskGrey, tmpKeyPoints); |
|
|
|
points.clear(); |
|
for (const auto &kp : tmpKeyPoints) { |
|
points.push_back(kp.pt); |
|
} |
|
} |
|
|
|
//Detect extrem changes in scene content and report it |
|
static bool detect_scene_change(const cv::UMat& srcMotionMaskGrey, const float thresh, const float theshDiff) { |
|
static thread_local float last_movement = 0; |
|
|
|
float movement = cv::countNonZero(srcMotionMaskGrey) / float(srcMotionMaskGrey.cols * srcMotionMaskGrey.rows); |
|
float relation = movement > 0 && last_movement > 0 ? std::max(movement, last_movement) / std::min(movement, last_movement) : 0; |
|
float relM = relation * log10(1.0f + (movement * 9.0)); |
|
float relLM = relation * log10(1.0f + (last_movement * 9.0)); |
|
|
|
bool result = !((movement > 0 && last_movement > 0 && relation > 0) |
|
&& (relM < thresh && relLM < thresh && fabs(relM - relLM) < theshDiff)); |
|
last_movement = (last_movement + movement) / 2.0f; |
|
return result; |
|
} |
|
|
|
//Visualize the sparse optical flow |
|
static void visualize_sparse_optical_flow(const cv::UMat &prevGrey, const cv::UMat &nextGrey, const vector<cv::Point2f> &detectedPoints, const float scaleFactor, const int maxStrokeSize, const cv::Scalar color, const int maxPoints, const float pointLossPercent) { |
|
static thread_local vector<cv::Point2f> hull, prevPoints, nextPoints, newPoints; |
|
static thread_local vector<cv::Point2f> upPrevPoints, upNextPoints; |
|
static thread_local std::vector<uchar> status; |
|
static thread_local std::vector<float> err; |
|
static thread_local std::random_device rd; |
|
static thread_local std::mt19937 g(rd()); |
|
|
|
//less then 5 points is a degenerate case (e.g. the corners of a video frame) |
|
if (detectedPoints.size() > 4) { |
|
cv::convexHull(detectedPoints, hull); |
|
float area = cv::contourArea(hull); |
|
//make sure the area of the point cloud is positive |
|
if (area > 0) { |
|
float density = (detectedPoints.size() / area); |
|
//stroke size is biased by the area of the point cloud |
|
float strokeSize = maxStrokeSize * pow(area / (nextGrey.cols * nextGrey.rows), 0.33f); |
|
//max points is biased by the densitiy of the point cloud |
|
size_t currentMaxPoints = ceil(density * maxPoints); |
|
|
|
//lose a number of random points specified by pointLossPercent |
|
std::shuffle(prevPoints.begin(), prevPoints.end(), g); |
|
prevPoints.resize(ceil(prevPoints.size() * (1.0f - (pointLossPercent / 100.0f)))); |
|
|
|
//calculate how many newly detected points to add |
|
size_t copyn = std::min(detectedPoints.size(), (size_t(std::ceil(currentMaxPoints)) - prevPoints.size())); |
|
if (prevPoints.size() < currentMaxPoints) { |
|
std::copy(detectedPoints.begin(), detectedPoints.begin() + copyn, std::back_inserter(prevPoints)); |
|
} |
|
|
|
//calculate the sparse optical flow |
|
cv::calcOpticalFlowPyrLK(prevGrey, nextGrey, prevPoints, nextPoints, status, err); |
|
newPoints.clear(); |
|
if (prevPoints.size() > 1 && nextPoints.size() > 1) { |
|
//scale the points to original size |
|
upNextPoints.clear(); |
|
upPrevPoints.clear(); |
|
for (cv::Point2f pt : prevPoints) { |
|
upPrevPoints.push_back(pt /= scaleFactor); |
|
} |
|
|
|
for (cv::Point2f pt : nextPoints) { |
|
upNextPoints.push_back(pt /= scaleFactor); |
|
} |
|
|
|
using namespace cv::v4d::nvg; |
|
//start drawing |
|
beginPath(); |
|
strokeWidth(strokeSize); |
|
strokeColor(color); |
|
|
|
for (size_t i = 0; i < prevPoints.size(); i++) { |
|
if (status[i] == 1 //point was found in prev and new set |
|
&& err[i] < (1.0 / density) //with a higher density be more sensitive to the feature error |
|
&& upNextPoints[i].y >= 0 && upNextPoints[i].x >= 0 //check bounds |
|
&& upNextPoints[i].y < nextGrey.rows / scaleFactor && upNextPoints[i].x < nextGrey.cols / scaleFactor //check bounds |
|
) { |
|
float len = hypot(fabs(upPrevPoints[i].x - upNextPoints[i].x), fabs(upPrevPoints[i].y - upNextPoints[i].y)); |
|
//upper and lower bound of the flow vector lengthss |
|
if (len > 0 && len < sqrt(area)) { |
|
//collect new points |
|
newPoints.push_back(nextPoints[i]); |
|
//the actual drawing operations |
|
moveTo(upNextPoints[i].x, upNextPoints[i].y); |
|
lineTo(upPrevPoints[i].x, upPrevPoints[i].y); |
|
} |
|
} |
|
} |
|
//end drawing |
|
stroke(); |
|
} |
|
prevPoints = newPoints; |
|
} |
|
} |
|
} |
|
|
|
//Bloom post-processing effect |
|
static void bloom(const cv::UMat& src, cv::UMat &dst, int ksize = 3, int threshValue = 235, float gain = 4) { |
|
static thread_local cv::UMat bgr; |
|
static thread_local cv::UMat hls; |
|
static thread_local cv::UMat ls16; |
|
static thread_local cv::UMat ls; |
|
static thread_local cv::UMat blur; |
|
static thread_local std::vector<cv::UMat> hlsChannels; |
|
|
|
//remove alpha channel |
|
cv::cvtColor(src, bgr, cv::COLOR_BGRA2RGB); |
|
//convert to hls |
|
cv::cvtColor(bgr, hls, cv::COLOR_BGR2HLS); |
|
//split channels |
|
cv::split(hls, hlsChannels); |
|
//invert lightness |
|
cv::bitwise_not(hlsChannels[2], hlsChannels[2]); |
|
//multiply lightness and saturation |
|
cv::multiply(hlsChannels[1], hlsChannels[2], ls16, 1, CV_16U); |
|
//normalize |
|
cv::divide(ls16, cv::Scalar(255.0), ls, 1, CV_8U); |
|
//binary threhold according to threshValue |
|
cv::threshold(ls, blur, threshValue, 255, cv::THRESH_BINARY); |
|
//blur |
|
cv::boxFilter(blur, blur, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE); |
|
//convert to BGRA |
|
cv::cvtColor(blur, blur, cv::COLOR_GRAY2BGRA); |
|
//add src and the blurred L-S-product according to gain |
|
addWeighted(src, 1.0, blur, gain, 0, dst); |
|
} |
|
|
|
//Glow post-processing effect |
|
static void glow_effect(const cv::UMat &src, cv::UMat &dst, const int ksize) { |
|
cv::UMat resize; |
|
cv::UMat blur; |
|
cv::UMat dst16; |
|
|
|
cv::bitwise_not(src, dst); |
|
|
|
//Resize for some extra performance |
|
cv::resize(dst, resize, cv::Size(), 0.5, 0.5); |
|
//Cheap blur |
|
cv::boxFilter(resize, resize, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE); |
|
//Back to original size |
|
cv::resize(resize, blur, src.size()); |
|
|
|
//Multiply the src image with a blurred version of itself |
|
cv::multiply(dst, blur, dst16, 1, CV_16U); |
|
//Normalize and convert back to CV_8U |
|
cv::divide(dst16, cv::Scalar::all(255.0), dst, 1, CV_8U); |
|
|
|
cv::bitwise_not(dst, dst); |
|
} |
|
|
|
//Compose the different layers into the final image |
|
static void composite_layers(cv::UMat& background, const cv::UMat& foreground, const cv::UMat& frameBuffer, cv::UMat& dst, int kernelSize, float fgLossPercent, BackgroundModes bgMode, PostProcModes ppMode) { |
|
static thread_local cv::UMat tmp; |
|
static thread_local cv::UMat post; |
|
static thread_local cv::UMat backgroundGrey; |
|
static thread_local vector<cv::UMat> channels; |
|
|
|
//Lose a bit of foreground brightness based on fgLossPercent |
|
cv::subtract(foreground, cv::Scalar::all(255.0f * (fgLossPercent / 100.0f)), foreground); |
|
//Add foreground an the current framebuffer into foregound |
|
cv::add(foreground, frameBuffer, foreground); |
|
|
|
//Dependin on bgMode prepare the background in different ways |
|
switch (bgMode) { |
|
case GREY: |
|
cv::cvtColor(background, backgroundGrey, cv::COLOR_BGRA2GRAY); |
|
cv::cvtColor(backgroundGrey, background, cv::COLOR_GRAY2BGRA); |
|
break; |
|
case VALUE: |
|
cv::cvtColor(background, tmp, cv::COLOR_BGRA2BGR); |
|
cv::cvtColor(tmp, tmp, cv::COLOR_BGR2HSV); |
|
split(tmp, channels); |
|
cv::cvtColor(channels[2], background, cv::COLOR_GRAY2BGRA); |
|
break; |
|
case COLOR: |
|
break; |
|
case BLACK: |
|
background = cv::Scalar::all(0); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
//Depending on ppMode perform post-processing |
|
switch (ppMode) { |
|
case GLOW: |
|
glow_effect(foreground, post, kernelSize); |
|
break; |
|
case BLOOM: |
|
bloom(foreground, post, kernelSize, bloom_thresh, bloom_gain); |
|
break; |
|
case DISABLED: |
|
foreground.copyTo(post); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
//Add background and post-processed foreground into dst |
|
cv::add(background, post, dst); |
|
} |
|
|
|
using namespace cv::v4d; |
|
|
|
//Build the GUI |
|
static void setup_gui(cv::Ptr<V4D> main, cv::Ptr<V4D> mini) { |
|
main->imgui([main](ImGuiContext* ctx){ |
|
using namespace ImGui; |
|
SetCurrentContext(ctx); |
|
|
|
Begin("Effects"); |
|
Text("Foreground"); |
|
SliderFloat("Scale", &fg_scale, 0.1f, 4.0f); |
|
SliderFloat("Loss", &fg_loss, 0.1f, 99.9f); |
|
Text("Background"); |
|
static thread_local const char* bgm_items[4] = {"Grey", "Color", "Value", "Black"}; |
|
static thread_local int* bgm = (int*)&background_mode; |
|
ListBox("Mode", bgm, bgm_items, 4, 4); |
|
Text("Points"); |
|
SliderInt("Max. Points", &max_points, 10, 1000000); |
|
SliderFloat("Point Loss", &point_loss, 0.0f, 100.0f); |
|
Text("Optical flow"); |
|
SliderInt("Max. Stroke Size", &max_stroke, 1, 100); |
|
ColorPicker4("Color", effect_color); |
|
End(); |
|
|
|
Begin("Post Processing"); |
|
static thread_local const char* ppm_items[3] = {"Glow", "Bloom", "None"}; |
|
static thread_local int* ppm = (int*)&post_proc_mode; |
|
ListBox("Effect",ppm, ppm_items, 3, 3); |
|
SliderInt("Kernel Size",&glow_kernel_size, 1, 63); |
|
SliderFloat("Gain", &bloom_gain, 0.1f, 20.0f); |
|
End(); |
|
|
|
Begin("Settings"); |
|
Text("Scene Change Detection"); |
|
SliderFloat("Threshold", &scene_change_thresh, 0.1f, 1.0f); |
|
SliderFloat("Threshold Diff", &scene_change_thresh_diff, 0.1f, 1.0f); |
|
End(); |
|
#ifndef __EMSCRIPTEN__ |
|
}); |
|
|
|
mini->imgui([main, mini](ImGuiContext* ctx){ |
|
using namespace ImGui; |
|
SetCurrentContext(ctx); |
|
#endif |
|
Begin("Window"); |
|
if(Checkbox("Show FPS", &show_fps)) { |
|
main->setShowFPS(show_fps); |
|
#ifndef __EMSCRIPTEN__ |
|
mini->setShowFPS(show_fps); |
|
#endif |
|
} |
|
if(Checkbox("Stretch", &stretch)) { |
|
main->setStretching(stretch); |
|
} |
|
#ifndef __EMSCRIPTEN__ |
|
if(Button("Fullscreen")) { |
|
main->setFullscreen(!main->isFullscreen()); |
|
}; |
|
|
|
if(Button("Offscreen")) { |
|
main->setVisible(!main->isVisible()); |
|
}; |
|
#endif |
|
End(); |
|
}); |
|
} |
|
|
|
static bool iteration(cv::Ptr<V4D> window) { |
|
if(!window->capture()) |
|
return false; |
|
|
|
static thread_local cv::Size fbSz = window->fbSize(); |
|
//BGRA |
|
static thread_local cv::UMat background, down; |
|
static thread_local cv::UMat foreground(fbSz, CV_8UC4, cv::Scalar::all(0)); |
|
//BGR |
|
static thread_local cv::UMat miniFrame; |
|
//GREY |
|
static thread_local cv::UMat downPrevGrey, downNextGrey, downMotionMaskGrey; |
|
static thread_local vector<cv::Point2f> detectedPoints; |
|
|
|
|
|
window->fb([](cv::UMat& frameBuffer) { |
|
//resize to foreground scale |
|
cv::resize(frameBuffer, down, cv::Size(fbSz.width * fg_scale, fbSz.height * fg_scale)); |
|
//save video background |
|
frameBuffer.copyTo(background); |
|
}); |
|
|
|
cv::cvtColor(down, downNextGrey, cv::COLOR_RGBA2GRAY); |
|
//Subtract the background to create a motion mask |
|
prepare_motion_mask(downNextGrey, downMotionMaskGrey); |
|
//Detect trackable points in the motion mask |
|
detect_points(downMotionMaskGrey, detectedPoints); |
|
|
|
window->nvg([]() { |
|
cv::v4d::nvg::clear(); |
|
if (!downPrevGrey.empty()) { |
|
//We don't want the algorithm to get out of hand when there is a scene change, so we suppress it when we detect one. |
|
if (!detect_scene_change(downMotionMaskGrey, scene_change_thresh, scene_change_thresh_diff)) { |
|
//Visualize the sparse optical flow using nanovg |
|
cv::Scalar color = cv::Scalar(effect_color[2] * 255, effect_color[1] * 255, effect_color[0] * 255, effect_color[3] * 255); |
|
visualize_sparse_optical_flow(downPrevGrey, downNextGrey, detectedPoints, fg_scale, max_stroke, color, max_points, point_loss); |
|
} |
|
} |
|
}); |
|
|
|
downPrevGrey = downNextGrey.clone(); |
|
|
|
window->fb([](cv::UMat& framebuffer){ |
|
//Put it all together (OpenCL) |
|
composite_layers(background, foreground, framebuffer, framebuffer, glow_kernel_size, fg_loss, background_mode, post_proc_mode); |
|
cvtColor(framebuffer, miniFrame, cv::COLOR_BGRA2RGB); |
|
}); |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
if(window->isMain()) |
|
miniWindow->feed(miniFrame); |
|
#endif |
|
window->write(); |
|
|
|
//If onscreen rendering is enabled it displays the framebuffer in the native window. Returns false if the window was closed. |
|
#ifndef __EMSCRIPTEN__ |
|
if(window->isMain()) { |
|
if(window->isFocused()) { |
|
return window->display() && miniWindow->display(); |
|
} |
|
else { |
|
return miniWindow->display() && window->display(); |
|
} |
|
} else { |
|
return window->display(); |
|
} |
|
#else |
|
return window->display(); |
|
#endif |
|
} |
|
|
|
int main(int argc, char **argv) { |
|
CV_UNUSED(argc); |
|
CV_UNUSED(argv); |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
if (argc != 2) { |
|
std::cerr << "Usage: optflow <input-video-file>" << endl; |
|
exit(1); |
|
} |
|
#endif |
|
|
|
try { |
|
using namespace cv::v4d; |
|
cv::Ptr<V4D> window = V4D::make(WIDTH, HEIGHT, "Sparse Optical Flow Demo", ALL, OFFSCREEN); |
|
#ifndef __EMSCRIPTEN__ |
|
miniWindow = V4D::make(270, 240, "Mini", IMGUI, OFFSCREEN); |
|
#endif |
|
window->printSystemInfo(); |
|
window->setStretching(stretch); |
|
if (!OFFSCREEN) { |
|
#ifndef __EMSCRIPTEN__ |
|
setup_gui(window, miniWindow); |
|
#else |
|
setup_gui(window, window); |
|
#endif |
|
} |
|
|
|
#ifndef __EMSCRIPTEN__ |
|
Source src = makeCaptureSource(window, argv[1]); |
|
window->setSource(src); |
|
Sink sink = makeWriterSink(window, OUTPUT_FILENAME, src.fps(), cv::Size(WIDTH, HEIGHT)); |
|
window->setSink(sink); |
|
#else |
|
Source src = makeCaptureSource(WIDTH, HEIGHT, window); |
|
window->setSource(src); |
|
#endif |
|
|
|
window->run(iteration); |
|
} catch (std::exception& ex) { |
|
cerr << ex.what() << endl; |
|
} |
|
return 0; |
|
}
|
|
|