Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

518 lines
19 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright Amir Hassan (kallaballa) <amir@viel-zu.org>
#include <opencv2/v4d/v4d.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/optflow.hpp>
#include <opencv2/core/ocl.hpp>
#include <cmath>
#include <vector>
#include <set>
#include <string>
#include <random>
using std::cerr;
using std::endl;
using std::vector;
using std::string;
/* Demo parameters */
#ifndef __EMSCRIPTEN__
constexpr long unsigned int WIDTH = 1280;
constexpr long unsigned int HEIGHT = 720;
#else
constexpr long unsigned int WIDTH = 960;
constexpr long unsigned int HEIGHT = 960;
#endif
const unsigned long DIAG = hypot(double(WIDTH), double(HEIGHT));
#ifndef __EMSCRIPTEN__
constexpr const char* OUTPUT_FILENAME = "../optflow-demo.mkv";
#endif
constexpr bool OFFSCREEN = false;
#ifndef __EMSCRIPTEN__
//the second window
static cv::Ptr<cv::v4d::V4D> miniWindow;
#endif
/* Visualization parameters */
//How the background will be visualized
enum BackgroundModes {
GREY,
COLOR,
VALUE,
BLACK
};
//Post-processing modes for the foreground
enum PostProcModes {
GLOW,
BLOOM,
DISABLED
};
// Generate the foreground at this scale.
static float fg_scale = 0.5f;
// On every frame the foreground loses on brightness. Specifies the loss in percent.
#ifndef __EMSCRIPTEN__
static float fg_loss = 2.5;
#else
static float fg_loss = 10.0;
#endif
//Convert the background to greyscale
static BackgroundModes background_mode = GREY;
// Peak thresholds for the scene change detection. Lowering them makes the detection more sensitive but
// the default should be fine.
static float scene_change_thresh = 0.29f;
static float scene_change_thresh_diff = 0.1f;
// The theoretical maximum number of points to track which is scaled by the density of detected points
// and therefor is usually much smaller.
#ifndef __EMSCRIPTEN__
static int max_points = 250000;
#else
static int max_points = 100000;
#endif
// How many of the tracked points to lose intentionally, in percent.
#ifndef __EMSCRIPTEN__
static float point_loss = 25;
#else
static float point_loss = 10;
#endif
// The theoretical maximum size of the drawing stroke which is scaled by the area of the convex hull
// of tracked points and therefor is usually much smaller.
static int max_stroke = 10;
// Red, green, blue and alpha. All from 0.0f to 1.0f
static float effect_color[4] = {1.0f, 0.75f, 0.4f, 1.0f};
//display on-screen FPS
static bool show_fps = true;
//Stretch frame buffer to window size
static bool stretch = false;
//The post processing mode
#ifndef __EMSCRIPTEN__
static PostProcModes post_proc_mode = GLOW;
#else
static PostProcModes post_proc_mode = DISABLED;
#endif
// Intensity of glow or bloom defined by kernel size. The default scales with the image diagonal.
static int glow_kernel_size = std::max(int(DIAG / 100 % 2 == 0 ? DIAG / 100 + 1 : DIAG / 100), 1);
//The lightness selection threshold
static int bloom_thresh = 210;
//The intensity of the bloom filter
static float bloom_gain = 3;
using namespace cv::v4d;
//Uses background subtraction to generate a "motion mask"
static void prepare_motion_mask(const cv::UMat& srcGrey, cv::UMat& motionMaskGrey) {
static thread_local cv::Ptr<cv::BackgroundSubtractor> bg_subtrator = cv::createBackgroundSubtractorMOG2(100, 16.0, false);
static thread_local int morph_size = 1;
static thread_local cv::Mat element = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2 * morph_size + 1, 2 * morph_size + 1), cv::Point(morph_size, morph_size));
bg_subtrator->apply(srcGrey, motionMaskGrey);
//Surpress speckles
cv::morphologyEx(motionMaskGrey, motionMaskGrey, cv::MORPH_OPEN, element, cv::Point(element.cols >> 1, element.rows >> 1), 2, cv::BORDER_CONSTANT, cv::morphologyDefaultBorderValue());
}
//Detect points to track
static void detect_points(const cv::UMat& srcMotionMaskGrey, vector<cv::Point2f>& points) {
static thread_local cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create(1, false);
static thread_local vector<cv::KeyPoint> tmpKeyPoints;
tmpKeyPoints.clear();
detector->detect(srcMotionMaskGrey, tmpKeyPoints);
points.clear();
for (const auto &kp : tmpKeyPoints) {
points.push_back(kp.pt);
}
}
//Detect extrem changes in scene content and report it
static bool detect_scene_change(const cv::UMat& srcMotionMaskGrey, const float thresh, const float theshDiff) {
static thread_local float last_movement = 0;
float movement = cv::countNonZero(srcMotionMaskGrey) / float(srcMotionMaskGrey.cols * srcMotionMaskGrey.rows);
float relation = movement > 0 && last_movement > 0 ? std::max(movement, last_movement) / std::min(movement, last_movement) : 0;
float relM = relation * log10(1.0f + (movement * 9.0));
float relLM = relation * log10(1.0f + (last_movement * 9.0));
bool result = !((movement > 0 && last_movement > 0 && relation > 0)
&& (relM < thresh && relLM < thresh && fabs(relM - relLM) < theshDiff));
last_movement = (last_movement + movement) / 2.0f;
return result;
}
//Visualize the sparse optical flow
static void visualize_sparse_optical_flow(const cv::UMat &prevGrey, const cv::UMat &nextGrey, const vector<cv::Point2f> &detectedPoints, const float scaleFactor, const int maxStrokeSize, const cv::Scalar color, const int maxPoints, const float pointLossPercent) {
static thread_local vector<cv::Point2f> hull, prevPoints, nextPoints, newPoints;
static thread_local vector<cv::Point2f> upPrevPoints, upNextPoints;
static thread_local std::vector<uchar> status;
static thread_local std::vector<float> err;
static thread_local std::random_device rd;
static thread_local std::mt19937 g(rd());
//less then 5 points is a degenerate case (e.g. the corners of a video frame)
if (detectedPoints.size() > 4) {
cv::convexHull(detectedPoints, hull);
float area = cv::contourArea(hull);
//make sure the area of the point cloud is positive
if (area > 0) {
float density = (detectedPoints.size() / area);
//stroke size is biased by the area of the point cloud
float strokeSize = maxStrokeSize * pow(area / (nextGrey.cols * nextGrey.rows), 0.33f);
//max points is biased by the densitiy of the point cloud
size_t currentMaxPoints = ceil(density * maxPoints);
//lose a number of random points specified by pointLossPercent
std::shuffle(prevPoints.begin(), prevPoints.end(), g);
prevPoints.resize(ceil(prevPoints.size() * (1.0f - (pointLossPercent / 100.0f))));
//calculate how many newly detected points to add
size_t copyn = std::min(detectedPoints.size(), (size_t(std::ceil(currentMaxPoints)) - prevPoints.size()));
if (prevPoints.size() < currentMaxPoints) {
std::copy(detectedPoints.begin(), detectedPoints.begin() + copyn, std::back_inserter(prevPoints));
}
//calculate the sparse optical flow
cv::calcOpticalFlowPyrLK(prevGrey, nextGrey, prevPoints, nextPoints, status, err);
newPoints.clear();
if (prevPoints.size() > 1 && nextPoints.size() > 1) {
//scale the points to original size
upNextPoints.clear();
upPrevPoints.clear();
for (cv::Point2f pt : prevPoints) {
upPrevPoints.push_back(pt /= scaleFactor);
}
for (cv::Point2f pt : nextPoints) {
upNextPoints.push_back(pt /= scaleFactor);
}
using namespace cv::v4d::nvg;
//start drawing
beginPath();
strokeWidth(strokeSize);
strokeColor(color);
for (size_t i = 0; i < prevPoints.size(); i++) {
if (status[i] == 1 //point was found in prev and new set
&& err[i] < (1.0 / density) //with a higher density be more sensitive to the feature error
&& upNextPoints[i].y >= 0 && upNextPoints[i].x >= 0 //check bounds
&& upNextPoints[i].y < nextGrey.rows / scaleFactor && upNextPoints[i].x < nextGrey.cols / scaleFactor //check bounds
) {
float len = hypot(fabs(upPrevPoints[i].x - upNextPoints[i].x), fabs(upPrevPoints[i].y - upNextPoints[i].y));
//upper and lower bound of the flow vector lengthss
if (len > 0 && len < sqrt(area)) {
//collect new points
newPoints.push_back(nextPoints[i]);
//the actual drawing operations
moveTo(upNextPoints[i].x, upNextPoints[i].y);
lineTo(upPrevPoints[i].x, upPrevPoints[i].y);
}
}
}
//end drawing
stroke();
}
prevPoints = newPoints;
}
}
}
//Bloom post-processing effect
static void bloom(const cv::UMat& src, cv::UMat &dst, int ksize = 3, int threshValue = 235, float gain = 4) {
static thread_local cv::UMat bgr;
static thread_local cv::UMat hls;
static thread_local cv::UMat ls16;
static thread_local cv::UMat ls;
static thread_local cv::UMat blur;
static thread_local std::vector<cv::UMat> hlsChannels;
//remove alpha channel
cv::cvtColor(src, bgr, cv::COLOR_BGRA2RGB);
//convert to hls
cv::cvtColor(bgr, hls, cv::COLOR_BGR2HLS);
//split channels
cv::split(hls, hlsChannels);
//invert lightness
cv::bitwise_not(hlsChannels[2], hlsChannels[2]);
//multiply lightness and saturation
cv::multiply(hlsChannels[1], hlsChannels[2], ls16, 1, CV_16U);
//normalize
cv::divide(ls16, cv::Scalar(255.0), ls, 1, CV_8U);
//binary threhold according to threshValue
cv::threshold(ls, blur, threshValue, 255, cv::THRESH_BINARY);
//blur
cv::boxFilter(blur, blur, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE);
//convert to BGRA
cv::cvtColor(blur, blur, cv::COLOR_GRAY2BGRA);
//add src and the blurred L-S-product according to gain
addWeighted(src, 1.0, blur, gain, 0, dst);
}
//Glow post-processing effect
static void glow_effect(const cv::UMat &src, cv::UMat &dst, const int ksize) {
cv::UMat resize;
cv::UMat blur;
cv::UMat dst16;
cv::bitwise_not(src, dst);
//Resize for some extra performance
cv::resize(dst, resize, cv::Size(), 0.5, 0.5);
//Cheap blur
cv::boxFilter(resize, resize, -1, cv::Size(ksize, ksize), cv::Point(-1,-1), true, cv::BORDER_REPLICATE);
//Back to original size
cv::resize(resize, blur, src.size());
//Multiply the src image with a blurred version of itself
cv::multiply(dst, blur, dst16, 1, CV_16U);
//Normalize and convert back to CV_8U
cv::divide(dst16, cv::Scalar::all(255.0), dst, 1, CV_8U);
cv::bitwise_not(dst, dst);
}
//Compose the different layers into the final image
static void composite_layers(cv::UMat& background, const cv::UMat& foreground, const cv::UMat& frameBuffer, cv::UMat& dst, int kernelSize, float fgLossPercent, BackgroundModes bgMode, PostProcModes ppMode) {
static thread_local cv::UMat tmp;
static thread_local cv::UMat post;
static thread_local cv::UMat backgroundGrey;
static thread_local vector<cv::UMat> channels;
//Lose a bit of foreground brightness based on fgLossPercent
cv::subtract(foreground, cv::Scalar::all(255.0f * (fgLossPercent / 100.0f)), foreground);
//Add foreground an the current framebuffer into foregound
cv::add(foreground, frameBuffer, foreground);
//Dependin on bgMode prepare the background in different ways
switch (bgMode) {
case GREY:
cv::cvtColor(background, backgroundGrey, cv::COLOR_BGRA2GRAY);
cv::cvtColor(backgroundGrey, background, cv::COLOR_GRAY2BGRA);
break;
case VALUE:
cv::cvtColor(background, tmp, cv::COLOR_BGRA2BGR);
cv::cvtColor(tmp, tmp, cv::COLOR_BGR2HSV);
split(tmp, channels);
cv::cvtColor(channels[2], background, cv::COLOR_GRAY2BGRA);
break;
case COLOR:
break;
case BLACK:
background = cv::Scalar::all(0);
break;
default:
break;
}
//Depending on ppMode perform post-processing
switch (ppMode) {
case GLOW:
glow_effect(foreground, post, kernelSize);
break;
case BLOOM:
bloom(foreground, post, kernelSize, bloom_thresh, bloom_gain);
break;
case DISABLED:
foreground.copyTo(post);
break;
default:
break;
}
//Add background and post-processed foreground into dst
cv::add(background, post, dst);
}
using namespace cv::v4d;
//Build the GUI
static void setup_gui(cv::Ptr<V4D> main, cv::Ptr<V4D> mini) {
main->imgui([main](ImGuiContext* ctx){
using namespace ImGui;
SetCurrentContext(ctx);
Begin("Effects");
Text("Foreground");
SliderFloat("Scale", &fg_scale, 0.1f, 4.0f);
SliderFloat("Loss", &fg_loss, 0.1f, 99.9f);
Text("Background");
static thread_local const char* bgm_items[4] = {"Grey", "Color", "Value", "Black"};
static thread_local int* bgm = (int*)&background_mode;
ListBox("Mode", bgm, bgm_items, 4, 4);
Text("Points");
SliderInt("Max. Points", &max_points, 10, 1000000);
SliderFloat("Point Loss", &point_loss, 0.0f, 100.0f);
Text("Optical flow");
SliderInt("Max. Stroke Size", &max_stroke, 1, 100);
ColorPicker4("Color", effect_color);
End();
Begin("Post Processing");
static thread_local const char* ppm_items[3] = {"Glow", "Bloom", "None"};
static thread_local int* ppm = (int*)&post_proc_mode;
ListBox("Effect",ppm, ppm_items, 3, 3);
SliderInt("Kernel Size",&glow_kernel_size, 1, 63);
SliderFloat("Gain", &bloom_gain, 0.1f, 20.0f);
End();
Begin("Settings");
Text("Scene Change Detection");
SliderFloat("Threshold", &scene_change_thresh, 0.1f, 1.0f);
SliderFloat("Threshold Diff", &scene_change_thresh_diff, 0.1f, 1.0f);
End();
#ifndef __EMSCRIPTEN__
});
mini->imgui([main, mini](ImGuiContext* ctx){
using namespace ImGui;
SetCurrentContext(ctx);
#endif
Begin("Window");
if(Checkbox("Show FPS", &show_fps)) {
main->setShowFPS(show_fps);
#ifndef __EMSCRIPTEN__
mini->setShowFPS(show_fps);
#endif
}
if(Checkbox("Stretch", &stretch)) {
main->setStretching(stretch);
}
#ifndef __EMSCRIPTEN__
if(Button("Fullscreen")) {
main->setFullscreen(!main->isFullscreen());
};
if(Button("Offscreen")) {
main->setVisible(!main->isVisible());
};
#endif
End();
});
}
static bool iteration(cv::Ptr<V4D> window) {
if(!window->capture())
return false;
static thread_local cv::Size fbSz = window->fbSize();
//BGRA
static thread_local cv::UMat background, down;
static thread_local cv::UMat foreground(fbSz, CV_8UC4, cv::Scalar::all(0));
//BGR
static thread_local cv::UMat miniFrame;
//GREY
static thread_local cv::UMat downPrevGrey, downNextGrey, downMotionMaskGrey;
static thread_local vector<cv::Point2f> detectedPoints;
window->fb([](cv::UMat& frameBuffer) {
//resize to foreground scale
cv::resize(frameBuffer, down, cv::Size(fbSz.width * fg_scale, fbSz.height * fg_scale));
//save video background
frameBuffer.copyTo(background);
});
cv::cvtColor(down, downNextGrey, cv::COLOR_RGBA2GRAY);
//Subtract the background to create a motion mask
prepare_motion_mask(downNextGrey, downMotionMaskGrey);
//Detect trackable points in the motion mask
detect_points(downMotionMaskGrey, detectedPoints);
window->nvg([]() {
cv::v4d::nvg::clear();
if (!downPrevGrey.empty()) {
//We don't want the algorithm to get out of hand when there is a scene change, so we suppress it when we detect one.
if (!detect_scene_change(downMotionMaskGrey, scene_change_thresh, scene_change_thresh_diff)) {
//Visualize the sparse optical flow using nanovg
cv::Scalar color = cv::Scalar(effect_color[2] * 255, effect_color[1] * 255, effect_color[0] * 255, effect_color[3] * 255);
visualize_sparse_optical_flow(downPrevGrey, downNextGrey, detectedPoints, fg_scale, max_stroke, color, max_points, point_loss);
}
}
});
downPrevGrey = downNextGrey.clone();
window->fb([](cv::UMat& framebuffer){
//Put it all together (OpenCL)
composite_layers(background, foreground, framebuffer, framebuffer, glow_kernel_size, fg_loss, background_mode, post_proc_mode);
cvtColor(framebuffer, miniFrame, cv::COLOR_BGRA2RGB);
});
#ifndef __EMSCRIPTEN__
if(window->isMain())
miniWindow->feed(miniFrame);
#endif
window->write();
//If onscreen rendering is enabled it displays the framebuffer in the native window. Returns false if the window was closed.
#ifndef __EMSCRIPTEN__
if(window->isMain()) {
if(window->isFocused()) {
return window->display() && miniWindow->display();
}
else {
return miniWindow->display() && window->display();
}
} else {
return window->display();
}
#else
return window->display();
#endif
}
int main(int argc, char **argv) {
CV_UNUSED(argc);
CV_UNUSED(argv);
#ifndef __EMSCRIPTEN__
if (argc != 2) {
std::cerr << "Usage: optflow <input-video-file>" << endl;
exit(1);
}
#endif
try {
using namespace cv::v4d;
cv::Ptr<V4D> window = V4D::make(WIDTH, HEIGHT, "Sparse Optical Flow Demo", ALL, OFFSCREEN);
#ifndef __EMSCRIPTEN__
miniWindow = V4D::make(270, 240, "Mini", IMGUI, OFFSCREEN);
#endif
window->printSystemInfo();
window->setStretching(stretch);
if (!OFFSCREEN) {
#ifndef __EMSCRIPTEN__
setup_gui(window, miniWindow);
#else
setup_gui(window, window);
#endif
}
#ifndef __EMSCRIPTEN__
Source src = makeCaptureSource(window, argv[1]);
window->setSource(src);
Sink sink = makeWriterSink(window, OUTPUT_FILENAME, src.fps(), cv::Size(WIDTH, HEIGHT));
window->setSink(sink);
#else
Source src = makeCaptureSource(WIDTH, HEIGHT, window);
window->setSource(src);
#endif
window->run(iteration);
} catch (std::exception& ex) {
cerr << ex.what() << endl;
}
return 0;
}