You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
7.8 KiB
256 lines
7.8 KiB
/* |
|
* By downloading, copying, installing or using the software you agree to this license. |
|
* If you do not agree to this license, do not download, install, |
|
* copy or use the software. |
|
* |
|
* |
|
* License Agreement |
|
* For Open Source Computer Vision Library |
|
* (3 - clause BSD License) |
|
* |
|
* Redistribution and use in source and binary forms, with or without modification, |
|
* are permitted provided that the following conditions are met : |
|
* |
|
* *Redistributions of source code must retain the above copyright notice, |
|
* this list of conditions and the following disclaimer. |
|
* |
|
* * Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and / or other materials provided with the distribution. |
|
* |
|
* * Neither the names of the copyright holders nor the names of the contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* This software is provided by the copyright holders and contributors "as is" and |
|
* any express or implied warranties, including, but not limited to, the implied |
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
* In no event shall copyright holders or contributors be liable for any direct, |
|
* indirect, incidental, special, exemplary, or consequential damages |
|
* (including, but not limited to, procurement of substitute goods or services; |
|
* loss of use, data, or profits; or business interruption) however caused |
|
* and on any theory of liability, whether in contract, strict liability, |
|
* or tort(including negligence or otherwise) arising in any way out of |
|
* the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace std; |
|
using namespace std::tr1; |
|
using namespace testing; |
|
using namespace perf; |
|
using namespace cv; |
|
using namespace cv::ximgproc; |
|
|
|
static string getOpenCVExtraDir() |
|
{ |
|
return cvtest::TS::ptr()->get_data_path(); |
|
} |
|
|
|
CV_ENUM(SupportedTypes, CV_8UC1, CV_8UC3, CV_32FC1); // reduced set |
|
CV_ENUM(ModeType, DTF_NC, DTF_IC, DTF_RF) |
|
typedef tuple<Size, ModeType, SupportedTypes, SupportedTypes> DTParams; |
|
|
|
Mat convertTypeAndSize(Mat src, int dstType, Size dstSize) |
|
{ |
|
Mat dst; |
|
CV_Assert(src.channels() == 3); |
|
|
|
int dstChannels = CV_MAT_CN(dstType); |
|
|
|
if (dstChannels == 1) |
|
{ |
|
cvtColor(src, dst, COLOR_BGR2GRAY); |
|
} |
|
else if (dstChannels == 2) |
|
{ |
|
Mat srcCn[3]; |
|
split(src, srcCn); |
|
merge(srcCn, 2, dst); |
|
} |
|
else if (dstChannels == 3) |
|
{ |
|
dst = src.clone(); |
|
} |
|
else if (dstChannels == 4) |
|
{ |
|
Mat srcCn[4]; |
|
split(src, srcCn); |
|
srcCn[3] = srcCn[0].clone(); |
|
merge(srcCn, 4, dst); |
|
} |
|
|
|
dst.convertTo(dst, dstType); |
|
resize(dst, dst, dstSize); |
|
|
|
return dst; |
|
} |
|
|
|
TEST(DomainTransformTest, SplatSurfaceAccuracy) |
|
{ |
|
static int dtModes[] = {DTF_NC, DTF_RF, DTF_IC}; |
|
RNG rnd(0); |
|
|
|
for (int i = 0; i < 15; i++) |
|
{ |
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024)); |
|
|
|
int guideCn = rnd.uniform(1, 4); |
|
Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn)); |
|
randu(guide, 0, 255); |
|
|
|
Scalar surfaceValue; |
|
int srcCn = rnd.uniform(1, 4); |
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255); |
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue); |
|
|
|
double sigma_s = rnd.uniform(1.0, 100.0); |
|
double sigma_r = rnd.uniform(1.0, 100.0); |
|
int mode = dtModes[i%3]; |
|
|
|
Mat res; |
|
dtFilter(guide, src, res, sigma_s, sigma_r, mode, 1); |
|
|
|
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels(); |
|
EXPECT_LE(normL1, 1.0/64); |
|
} |
|
} |
|
|
|
typedef TestWithParam<DTParams> DomainTransformTest; |
|
TEST_P(DomainTransformTest, MultiThreadReproducibility) |
|
{ |
|
if (cv::getNumberOfCPUs() == 1) |
|
return; |
|
|
|
double MAX_DIF = 1.0; |
|
double MAX_MEAN_DIF = 1.0 / 256.0; |
|
int loopsCount = 2; |
|
RNG rng(0); |
|
|
|
DTParams params = GetParam(); |
|
Size size = get<0>(params); |
|
int mode = get<1>(params); |
|
int guideType = get<2>(params); |
|
int srcType = get<3>(params); |
|
|
|
Mat original = imread(getOpenCVExtraDir() + "cv/edgefilter/statue.png"); |
|
Mat guide = convertTypeAndSize(original, guideType, size); |
|
Mat src = convertTypeAndSize(original, srcType, size); |
|
|
|
for (int iter = 0; iter <= loopsCount; iter++) |
|
{ |
|
double ss = rng.uniform(0.0, 100.0); |
|
double sc = rng.uniform(0.0, 100.0); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
Mat resMultithread; |
|
dtFilter(guide, src, resMultithread, ss, sc, mode); |
|
|
|
cv::setNumThreads(1); |
|
Mat resSingleThread; |
|
dtFilter(guide, src, resSingleThread, ss, sc, mode); |
|
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultithread, NORM_INF), MAX_DIF); |
|
EXPECT_LE(cv::norm(resSingleThread, resMultithread, NORM_L1), MAX_MEAN_DIF*src.total()); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(FullSet, DomainTransformTest, |
|
Combine(Values(szODD, szQVGA), ModeType::all(), SupportedTypes::all(), SupportedTypes::all()) |
|
); |
|
|
|
template<typename SrcVec> |
|
Mat getChessMat1px(Size sz, double whiteIntensity = 255) |
|
{ |
|
typedef typename DataType<SrcVec>::channel_type SrcType; |
|
|
|
Mat dst(sz, DataType<SrcVec>::type); |
|
|
|
SrcVec black = SrcVec::all(0); |
|
SrcVec white = SrcVec::all((SrcType)whiteIntensity); |
|
|
|
for (int i = 0; i < dst.rows; i++) |
|
for (int j = 0; j < dst.cols; j++) |
|
dst.at<SrcVec>(i, j) = ((i + j) % 2) ? white : black; |
|
|
|
return dst; |
|
} |
|
|
|
TEST(DomainTransformTest, ChessBoard_NC_accuracy) |
|
{ |
|
RNG rng(0); |
|
double MAX_DIF = 1; |
|
Size sz = szVGA; |
|
double ss = 80; |
|
double sc = 60; |
|
|
|
Mat srcb = randomMat(rng, sz, CV_8UC4, 0, 255, true); |
|
Mat srcf = randomMat(rng, sz, CV_32FC4, 0, 255, true); |
|
Mat chessb = getChessMat1px<Vec3b>(sz); |
|
|
|
Mat dstb, dstf; |
|
dtFilter(chessb, srcb.clone(), dstb, ss, sc, DTF_NC); |
|
dtFilter(chessb, srcf.clone(), dstf, ss, sc, DTF_NC); |
|
|
|
EXPECT_LE(cv::norm(srcb, dstb, NORM_INF), MAX_DIF); |
|
EXPECT_LE(cv::norm(srcf, dstf, NORM_INF), MAX_DIF); |
|
} |
|
|
|
TEST(DomainTransformTest, BoxFilter_NC_accuracy) |
|
{ |
|
double MAX_DIF = 1; |
|
int radius = 5; |
|
double sc = 1.0; |
|
double ss = 1.01*radius / sqrt(3.0); |
|
|
|
Mat src = imread(getOpenCVExtraDir() + "cv/edgefilter/statue.png"); |
|
ASSERT_TRUE(!src.empty()); |
|
|
|
Mat1b guide(src.size(), 200); |
|
Mat res_dt, res_box; |
|
|
|
blur(src, res_box, Size(2 * radius + 1, 2 * radius + 1)); |
|
dtFilter(guide, src, res_dt, ss, sc, DTF_NC, 1); |
|
|
|
EXPECT_LE(cv::norm(res_dt, res_box, NORM_L2), MAX_DIF*src.total()); |
|
} |
|
|
|
TEST(DomainTransformTest, AuthorReferenceAccuracy) |
|
{ |
|
string dir = getOpenCVExtraDir() + "cv/edgefilter"; |
|
double ss = 30; |
|
double sc = 0.2 * 255; |
|
|
|
Mat src = imread(dir + "/statue.png"); |
|
Mat ref_NC = imread(dir + "/dt/authors_statue_NC_ss30_sc0.2.png"); |
|
Mat ref_IC = imread(dir + "/dt/authors_statue_IC_ss30_sc0.2.png"); |
|
Mat ref_RF = imread(dir + "/dt/authors_statue_RF_ss30_sc0.2.png"); |
|
|
|
ASSERT_FALSE(src.empty()); |
|
ASSERT_FALSE(ref_NC.empty()); |
|
ASSERT_FALSE(ref_IC.empty()); |
|
ASSERT_FALSE(ref_RF.empty()); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
Mat res_NC, res_IC, res_RF; |
|
dtFilter(src, src, res_NC, ss, sc, DTF_NC); |
|
dtFilter(src, src, res_IC, ss, sc, DTF_IC); |
|
dtFilter(src, src, res_RF, ss, sc, DTF_RF); |
|
|
|
double totalMaxError = 1.0/64.0*src.total(); |
|
|
|
EXPECT_LE(cvtest::norm(res_NC, ref_NC, NORM_L2), totalMaxError); |
|
EXPECT_LE(cvtest::norm(res_NC, ref_NC, NORM_INF), 1); |
|
|
|
EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_L2), totalMaxError); |
|
EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_INF), 1); |
|
|
|
EXPECT_LE(cvtest::norm(res_RF, ref_RF, NORM_L2), totalMaxError); |
|
EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_INF), 1); |
|
} |
|
|
|
}
|
|
|