You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.0 KiB
219 lines
7.0 KiB
/* |
|
* By downloading, copying, installing or using the software you agree to this license. |
|
* If you do not agree to this license, do not download, install, |
|
* copy or use the software. |
|
* |
|
* |
|
* License Agreement |
|
* For Open Source Computer Vision Library |
|
* (3 - clause BSD License) |
|
* |
|
* Redistribution and use in source and binary forms, with or without modification, |
|
* are permitted provided that the following conditions are met : |
|
* |
|
* *Redistributions of source code must retain the above copyright notice, |
|
* this list of conditions and the following disclaimer. |
|
* |
|
* * Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and / or other materials provided with the distribution. |
|
* |
|
* * Neither the names of the copyright holders nor the names of the contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* This software is provided by the copyright holders and contributors "as is" and |
|
* any express or implied warranties, including, but not limited to, the implied |
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
* In no event shall copyright holders or contributors be liable for any direct, |
|
* indirect, incidental, special, exemplary, or consequential damages |
|
* (including, but not limited to, procurement of substitute goods or services; |
|
* loss of use, data, or profits; or business interruption) however caused |
|
* and on any theory of liability, whether in contract, strict liability, |
|
* or tort(including negligence or otherwise) arising in any way out of |
|
* the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace std; |
|
using namespace std::tr1; |
|
using namespace testing; |
|
using namespace cv; |
|
using namespace cv::ximgproc; |
|
|
|
#ifndef SQR |
|
#define SQR(x) ((x)*(x)) |
|
#endif |
|
|
|
static string getOpenCVExtraDir() |
|
{ |
|
return cvtest::TS::ptr()->get_data_path(); |
|
} |
|
|
|
static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64) |
|
{ |
|
double normInf = cvtest::norm(res, ref, NORM_INF); |
|
double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total(); |
|
|
|
if (maxNormInf >= 0) EXPECT_LE(normInf, maxNormInf); |
|
if (maxNormL2 >= 0) EXPECT_LE(normL2, maxNormL2); |
|
} |
|
|
|
TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy) |
|
{ |
|
RNG rnd(0); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
|
|
for (int i = 0; i < 5; i++) |
|
{ |
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024)); |
|
|
|
int guideCn = rnd.uniform(1, 8); |
|
Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn)); |
|
randu(guide, 0, 1); |
|
|
|
Scalar surfaceValue; |
|
int srcCn = rnd.uniform(1, 4); |
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255); |
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue); |
|
|
|
double sigma_s = rnd.uniform(1.0, 50.0); |
|
double sigma_r = rnd.uniform(0.1, 0.9); |
|
|
|
Mat res; |
|
amFilter(guide, src, res, sigma_s, sigma_r, false); |
|
|
|
double normInf = cvtest::norm(src, res, NORM_INF); |
|
EXPECT_EQ(normInf, 0); |
|
} |
|
} |
|
|
|
TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy) |
|
{ |
|
String srcImgPath = "cv/edgefilter/kodim23.png"; |
|
|
|
String refPaths[] = |
|
{ |
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png", |
|
"cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png", |
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png" |
|
}; |
|
|
|
pair<double, double> refParams[] = |
|
{ |
|
make_pair(5.0, 0.3), |
|
make_pair(30.0, 0.1), |
|
make_pair(50.0, 0.3) |
|
}; |
|
|
|
String refOutliersPaths[] = |
|
{ |
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png", |
|
"cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png", |
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png" |
|
}; |
|
|
|
pair<double, double> refOutliersParams[] = |
|
{ |
|
make_pair(5.0, 0.1), |
|
make_pair(15.0, 0.3), |
|
make_pair(50.0, 0.5), |
|
}; |
|
|
|
Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath); |
|
ASSERT_TRUE(!srcImg.empty()); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
|
|
for (int i = 0; i < 3; i++) |
|
{ |
|
Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]); |
|
double sigma_s = refParams[i].first; |
|
double sigma_r = refParams[i].second; |
|
ASSERT_TRUE(!refRes.empty()); |
|
|
|
Mat res; |
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false); |
|
amf->setUseRNG(false); |
|
amf->filter(srcImg, res, srcImg); |
|
amf->collectGarbage(); |
|
|
|
checkSimilarity(res, refRes); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) |
|
{ |
|
Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]); |
|
double sigma_s = refOutliersParams[i].first; |
|
double sigma_r = refOutliersParams[i].second; |
|
ASSERT_TRUE(!refRes.empty()); |
|
|
|
Mat res; |
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true); |
|
amf->setUseRNG(false); |
|
amf->filter(srcImg, res, srcImg); |
|
amf->collectGarbage(); |
|
|
|
checkSimilarity(res, refRes); |
|
} |
|
} |
|
|
|
typedef tuple<string, string> AMRefTestParams; |
|
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest; |
|
|
|
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false); |
|
|
|
TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy) |
|
{ |
|
AMRefTestParams params = GetParam(); |
|
|
|
string guideFileName = get<0>(params); |
|
string srcFileName = get<1>(params); |
|
|
|
Mat guide = imread(getOpenCVExtraDir() + guideFileName); |
|
Mat src = imread(getOpenCVExtraDir() + srcFileName); |
|
ASSERT_TRUE(!guide.empty() && !src.empty()); |
|
|
|
int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length(); |
|
RNG rnd(seed); |
|
|
|
//inconsistent downsample/upsample operations in reference implementation |
|
Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15); |
|
|
|
resize(guide, guide, dstSize); |
|
resize(src, src, dstSize); |
|
|
|
for (int iter = 0; iter < 4; iter++) |
|
{ |
|
double sigma_s = rnd.uniform(1.0, 50.0); |
|
double sigma_r = rnd.uniform(0.1, 0.9); |
|
bool adjust_outliers = (iter % 2 == 0); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
Mat res; |
|
amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers); |
|
|
|
cv::setNumThreads(1); |
|
Mat resRef; |
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers); |
|
amf->filter(src, resRef, guide); |
|
|
|
//results of reference implementation may differ on small sigma_s into small isolated region |
|
//due to low single-precision floating point numbers accuracy |
|
//therefore the threshold of inf norm was increased |
|
checkSimilarity(res, resRef, 25); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest, |
|
Combine( |
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"), |
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png") |
|
)); |
|
|
|
}
|
|
|