55 lines
1.9 KiB
55 lines
1.9 KiB
/* |
|
* cropped_word_recognition.cpp |
|
* |
|
* A demo program of text recognition in a given cropped word. |
|
* Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier. |
|
* |
|
* Created on: Jul 9, 2015 |
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es> |
|
*/ |
|
|
|
#include "opencv2/text.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::text; |
|
|
|
int main(int argc, char* argv[]) |
|
{ |
|
|
|
cout << endl << argv[0] << endl << endl; |
|
cout << "A demo program of Scene Text Character Recognition: " << endl; |
|
cout << "Shows the use of the OCRBeamSearchDecoder::ClassifierCallback class using the Single Layer CNN character classifier described in:" << endl; |
|
cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl; |
|
|
|
Mat image; |
|
if(argc>1) |
|
image = imread(argv[1]); |
|
else |
|
{ |
|
cout << " Usage: " << argv[0] << " <input_image>" << endl; |
|
cout << " the input image must contain a single character (e.g. scenetext_char01.jpg)." << endl << endl; |
|
return(0); |
|
} |
|
|
|
string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the clasifier output classes |
|
|
|
Ptr<OCRHMMDecoder::ClassifierCallback> ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"); |
|
|
|
double t_r = (double)getTickCount(); |
|
vector<int> out_classes; |
|
vector<double> out_confidences; |
|
|
|
ocr->eval(image, out_classes, out_confidences); |
|
|
|
cout << "OCR output = \"" << vocabulary[out_classes[0]] << "\" with confidence " |
|
<< out_confidences[0] << ". Evaluated in " |
|
<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl; |
|
|
|
return 0; |
|
}
|
|
|