Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

171 lines
5.4 KiB

import numpy as np
import skimage.io
from scipy.ndimage import zoom
from skimage.transform import resize
from caffe.proto import caffe_pb2
def load_image(filename, color=True):
"""
Load an image converting from grayscale or alpha as needed.
Take
filename: string
color: flag for color format. True (default) loads as RGB while False
loads as intensity (if image is already grayscale).
Give
image: an image with type np.float32 in range [0, 1]
of size (H x W x 3) in RGB or
of size (H x W x 1) in grayscale.
"""
img = skimage.img_as_float(skimage.io.imread(filename)).astype(np.float32)
if img.ndim == 2:
img = img[:, :, np.newaxis]
if color:
img = np.tile(img, (1, 1, 3))
elif img.shape[2] == 4:
img = img[:, :, :3]
return img
def resize_image(im, new_dims, interp_order=1):
"""
Resize an image array with interpolation.
Take
im: (H x W x K) ndarray
new_dims: (height, width) tuple of new dimensions.
interp_order: interpolation order, default is linear.
Give
im: resized ndarray with shape (new_dims[0], new_dims[1], K)
"""
if im.shape[-1] == 1 or im.shape[-1] == 3:
# skimage is fast but only understands {1,3} channel images in [0, 1].
im_min, im_max = im.min(), im.max()
im_std = (im - im_min) / (im_max - im_min)
resized_std = resize(im_std, new_dims, order=interp_order)
resized_im = resized_std * (im_max - im_min) + im_min
else:
# ndimage interpolates anything but more slowly.
scale = tuple(np.array(new_dims) / np.array(im.shape[:2]))
resized_im = zoom(im, scale + (1,), order=interp_order)
return resized_im.astype(np.float32)
def oversample(images, crop_dims):
"""
Crop images into the four corners, center, and their mirrored versions.
Take
image: iterable of (H x W x K) ndarrays
crop_dims: (height, width) tuple for the crops.
Give
crops: (10*N x H x W x K) ndarray of crops for number of inputs N.
"""
# Dimensions and center.
im_shape = np.array(images[0].shape)
crop_dims = np.array(crop_dims)
im_center = im_shape[:2] / 2.0
# Make crop coordinates
h_indices = (0, im_shape[0] - crop_dims[0])
w_indices = (0, im_shape[1] - crop_dims[1])
crops_ix = np.empty((5, 4), dtype=int)
curr = 0
for i in h_indices:
for j in w_indices:
crops_ix[curr] = (i, j, i + crop_dims[0], j + crop_dims[1])
curr += 1
crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate([
-crop_dims / 2.0,
crop_dims / 2.0
])
crops_ix = np.tile(crops_ix, (2, 1))
# Extract crops
crops = np.empty((10 * len(images), crop_dims[0], crop_dims[1],
im_shape[-1]), dtype=np.float32)
ix = 0
for im in images:
for crop in crops_ix:
crops[ix] = im[crop[0]:crop[2], crop[1]:crop[3], :]
ix += 1
crops[ix-5:ix] = crops[ix-5:ix, :, ::-1, :] # flip for mirrors
return crops
def blobproto_to_array(blob, return_diff=False):
"""Convert a blob proto to an array. In default, we will just return the data,
unless return_diff is True, in which case we will return the diff.
"""
if return_diff:
return np.array(blob.diff).reshape(
blob.num, blob.channels, blob.height, blob.width)
else:
return np.array(blob.data).reshape(
blob.num, blob.channels, blob.height, blob.width)
def array_to_blobproto(arr, diff=None):
"""Converts a 4-dimensional array to blob proto. If diff is given, also
convert the diff. You need to make sure that arr and diff have the same
shape, and this function does not do sanity check.
"""
if arr.ndim != 4:
raise ValueError('Incorrect array shape.')
blob = caffe_pb2.BlobProto()
blob.num, blob.channels, blob.height, blob.width = arr.shape;
blob.data.extend(arr.astype(float).flat)
if diff is not None:
blob.diff.extend(diff.astype(float).flat)
return blob
def arraylist_to_blobprotovecor_str(arraylist):
"""Converts a list of arrays to a serialized blobprotovec, which could be
then passed to a network for processing.
"""
vec = caffe_pb2.BlobProtoVector()
vec.blobs.extend([array_to_blobproto(arr) for arr in arraylist])
return vec.SerializeToString()
def blobprotovector_str_to_arraylist(str):
"""Converts a serialized blobprotovec to a list of arrays.
"""
vec = caffe_pb2.BlobProtoVector()
vec.ParseFromString(str)
return [blobproto_to_array(blob) for blob in vec.blobs]
def array_to_datum(arr, label=0):
"""Converts a 3-dimensional array to datum. If the array has dtype uint8,
the output data will be encoded as a string. Otherwise, the output data
will be stored in float format.
"""
if arr.ndim != 3:
raise ValueError('Incorrect array shape.')
datum = caffe_pb2.Datum()
datum.channels, datum.height, datum.width = arr.shape
if arr.dtype == np.uint8:
datum.data = arr.tostring()
else:
datum.float_data.extend(arr.flat)
datum.label = label
return datum
def datum_to_array(datum):
"""Converts a datum to an array. Note that the label is not returned,
as one can easily get it by calling datum.label.
"""
if len(datum.data):
return np.fromstring(datum.data, dtype = np.uint8).reshape(
datum.channels, datum.height, datum.width)
else:
return np.array(datum.float_data).astype(float).reshape(
datum.channels, datum.height, datum.width)