You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
310 lines
9.5 KiB
310 lines
9.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace saliency |
|
{ |
|
|
|
/** |
|
* Fine Grained Saliency |
|
*/ |
|
|
|
|
|
StaticSaliencyFineGrained::StaticSaliencyFineGrained() |
|
{ |
|
className = "FINE_GRAINED"; |
|
} |
|
|
|
StaticSaliencyFineGrained::~StaticSaliencyFineGrained() |
|
{ |
|
|
|
} |
|
|
|
|
|
bool StaticSaliencyFineGrained::computeSaliencyImpl(InputArray image, OutputArray saliencyMap ) |
|
{ |
|
Mat dst(Size(image.getMat().cols, image.getMat().rows), CV_8UC1); |
|
calcIntensityChannel(image.getMat(), dst); |
|
dst.copyTo(saliencyMap); |
|
|
|
#ifdef SALIENCY_DEBUG |
|
// visualize saliency map |
|
imshow( "Saliency Map Interna", saliencyMap ); |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
void StaticSaliencyFineGrained::copyImage(Mat srcArg, Mat dstArg) |
|
{ |
|
srcArg.copyTo(dstArg); |
|
} |
|
|
|
void StaticSaliencyFineGrained::calcIntensityChannel(Mat srcArg, Mat dstArg) |
|
{ |
|
if(dstArg.channels() > 1) |
|
{ |
|
//("Error: Destiny image must have only one channel.\n"); |
|
return; |
|
} |
|
const int numScales = 6; |
|
Mat intensityScaledOn[numScales]; |
|
Mat intensityScaledOff[numScales]; |
|
Mat gray = Mat::zeros(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
Mat integralImage(Size(srcArg.cols + 1, srcArg.rows + 1), CV_32FC1); |
|
Mat intensity(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
Mat intensityOn(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
Mat intensityOff(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
|
|
int i; |
|
int neighborhood; |
|
int neighborhoods[] = {3*4, 3*4*2, 3*4*2*2, 7*4, 7*4*2, 7*4*2*2}; |
|
|
|
for(i=0; i<numScales; i++) |
|
{ |
|
intensityScaledOn[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
intensityScaledOff[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1); |
|
} |
|
|
|
// Prepare the input image: put it into a grayscale image. |
|
if(srcArg.channels()==3) |
|
{ |
|
cvtColor(srcArg, gray, COLOR_BGR2GRAY); |
|
} |
|
else |
|
{ |
|
srcArg.copyTo(gray); |
|
} |
|
|
|
// smooth pixels at least twice, as done by Frintrop and Itti |
|
GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 ); |
|
GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 ); |
|
|
|
|
|
// Calculate integral image, only once. |
|
integral(gray, integralImage, CV_32F); |
|
|
|
|
|
for(i=0; i< numScales; i++) |
|
{ |
|
neighborhood = neighborhoods[i] ; |
|
getIntensityScaled(integralImage, gray, intensityScaledOn[i], intensityScaledOff[i], neighborhood); |
|
} |
|
|
|
mixScales(intensityScaledOn, intensityOn, intensityScaledOff, intensityOff, numScales); |
|
|
|
mixOnOff(intensityOn, intensityOff, intensity); |
|
|
|
intensity.copyTo(dstArg); |
|
} |
|
|
|
void StaticSaliencyFineGrained::getIntensityScaled(Mat integralImage, Mat gray, Mat intensityScaledOn, Mat intensityScaledOff, int neighborhood) |
|
{ |
|
float value, meanOn, meanOff; |
|
Point2i point; |
|
int x,y; |
|
intensityScaledOn.setTo(Scalar::all(0)); |
|
intensityScaledOff.setTo(Scalar::all(0)); |
|
|
|
|
|
for(y = 0; y < gray.rows; y++) |
|
{ |
|
for(x = 0; x < gray.cols; x++) |
|
{ |
|
point.x = x; |
|
point.y = y; |
|
value = getMean(integralImage, point, neighborhood, gray.at<uchar>(y, x)); |
|
|
|
meanOn = gray.at<uchar>(y, x) - value; |
|
meanOff = value - gray.at<uchar>(y, x); |
|
|
|
if(meanOn > 0) |
|
intensityScaledOn.at<uchar>(y, x) = (uchar)meanOn; |
|
else |
|
intensityScaledOn.at<uchar>(y, x) = 0; |
|
|
|
if(meanOff > 0) |
|
intensityScaledOff.at<uchar>(y, x) = (uchar)meanOff; |
|
else |
|
intensityScaledOff.at<uchar>(y, x) = 0; |
|
} |
|
} |
|
} |
|
|
|
float StaticSaliencyFineGrained::getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal) |
|
{ |
|
Point2i P1, P2; |
|
float value; |
|
|
|
P1.x = PixArg.x - neighbourhood + 1; |
|
P1.y = PixArg.y - neighbourhood + 1; |
|
P2.x = PixArg.x + neighbourhood + 1; |
|
P2.y = PixArg.y + neighbourhood + 1; |
|
|
|
if(P1.x < 0) |
|
P1.x = 0; |
|
else if(P1.x > srcArg.cols - 1) |
|
P1.x = srcArg.cols - 1; |
|
if(P2.x < 0) |
|
P2.x = 0; |
|
else if(P2.x > srcArg.cols - 1) |
|
P2.x = srcArg.cols - 1; |
|
if(P1.y < 0) |
|
P1.y = 0; |
|
else if(P1.y > srcArg.rows - 1) |
|
P1.y = srcArg.rows - 1; |
|
if(P2.y < 0) |
|
P2.y = 0; |
|
else if(P2.y > srcArg.rows - 1) |
|
P2.y = srcArg.rows - 1; |
|
|
|
// we use the integral image to compute fast features |
|
value = (float) ( |
|
(srcArg.at<float>(P2.y, P2.x)) + |
|
(srcArg.at<float>(P1.y, P1.x)) - |
|
(srcArg.at<float>(P2.y, P1.x)) - |
|
(srcArg.at<float>(P1.y, P2.x)) |
|
); |
|
value = (value - centerVal)/ (( (P2.x - P1.x) * (P2.y - P1.y))-1) ; |
|
return value; |
|
} |
|
|
|
void StaticSaliencyFineGrained::mixScales(Mat *intensityScaledOn, Mat intensityOn, Mat *intensityScaledOff, Mat intensityOff, const int numScales) |
|
{ |
|
int i=0, x, y; |
|
int width = intensityScaledOn[0].cols; |
|
int height = intensityScaledOn[0].rows; |
|
short int maxValOn = 0, currValOn=0; |
|
short int maxValOff = 0, currValOff=0; |
|
int maxValSumOff = 0, maxValSumOn=0; |
|
Mat mixedValuesOn(Size(width, height), CV_16UC1); |
|
Mat mixedValuesOff(Size(width, height), CV_16UC1); |
|
|
|
mixedValuesOn.setTo(Scalar::all(0)); |
|
mixedValuesOff.setTo(Scalar::all(0)); |
|
|
|
for(i=0;i<numScales;i++) |
|
{ |
|
for(y=0;y<height;y++) |
|
for(x=0;x<width;x++) |
|
{ |
|
currValOn = intensityScaledOn[i].at<uchar>(y, x); |
|
if(currValOn > maxValOn) |
|
maxValOn = currValOn; |
|
|
|
currValOff = intensityScaledOff[i].at<uchar>(y, x); |
|
if(currValOff > maxValOff) |
|
maxValOff = currValOff; |
|
|
|
mixedValuesOn.at<unsigned short>(y, x) += currValOn; |
|
mixedValuesOff.at<unsigned short>(y, x) += currValOff; |
|
} |
|
} |
|
|
|
for(y=0;y<height;y++) |
|
for(x=0;x<width;x++) |
|
{ |
|
currValOn = mixedValuesOn.at<unsigned short>(y, x); |
|
currValOff = mixedValuesOff.at<unsigned short>(y, x); |
|
if(currValOff > maxValSumOff) |
|
maxValSumOff = currValOff; |
|
if(currValOn > maxValSumOn) |
|
maxValSumOn = currValOn; |
|
} |
|
|
|
|
|
for(y=0;y<height;y++) |
|
for(x=0;x<width;x++) |
|
{ |
|
intensityOn.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOn.at<unsigned short>(y, x) / (float)maxValSumOn))); |
|
intensityOff.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOff.at<unsigned short>(y, x) / (float)maxValSumOff))); |
|
} |
|
|
|
} |
|
|
|
void StaticSaliencyFineGrained::mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensityArg) |
|
{ |
|
int x,y; |
|
int width = intensityOn.cols; |
|
int height= intensityOn.rows; |
|
int maxVal=0; |
|
|
|
int currValOn, currValOff, maxValSumOff, maxValSumOn; |
|
|
|
Mat intensity(Size(width, height), CV_8UC1); |
|
|
|
|
|
maxValSumOff = 0; |
|
maxValSumOn = 0; |
|
|
|
for(y=0;y<height;y++) |
|
for(x=0;x<width;x++) |
|
{ |
|
currValOn = intensityOn.at<uchar>(y, x); |
|
currValOff = intensityOff.at<uchar>(y, x); |
|
if(currValOff > maxValSumOff) |
|
maxValSumOff = currValOff; |
|
if(currValOn > maxValSumOn) |
|
maxValSumOn = currValOn; |
|
} |
|
|
|
if(maxValSumOn > maxValSumOff) |
|
maxVal = maxValSumOn; |
|
else |
|
maxVal = maxValSumOff; |
|
|
|
|
|
|
|
for(y=0;y<height;y++) |
|
for(x=0;x<width;x++) |
|
{ |
|
intensity.at<uchar>(y, x) = (uchar) (255. * (float) (intensityOn.at<uchar>(y, x) + intensityOff.at<uchar>(y, x)) / (float)maxVal); |
|
} |
|
|
|
intensity.copyTo(intensityArg); |
|
} |
|
|
|
|
|
} /* namespace saliency */ |
|
}/* namespace cv */
|
|
|