You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.8 KiB
72 lines
2.8 KiB
#include "test_precomp.hpp" |
|
|
|
#define NO_COMPARISON |
|
|
|
namespace cvtest |
|
{ |
|
TEST(xphoto_dctimagedenoising, regression) |
|
{ |
|
cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/"; |
|
int nTests = 1; |
|
|
|
float psnrThreshold[] = {0.5}; |
|
|
|
int psize[] = {8}; |
|
double sigma[] = {9.0}; |
|
|
|
for (int i = 0; i < nTests; ++i) |
|
{ |
|
cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1); |
|
cv::Mat src = cv::imread( srcName, 1 ); |
|
|
|
cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 ); |
|
cv::Mat previousResult = cv::imread( previousResultName, 1 ); |
|
|
|
cv::Mat sqrError = ( src - previousResult ).mul( src - previousResult ); |
|
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() ); |
|
double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])); |
|
|
|
|
|
cv::Mat currentResult, fastNlMeansResult; |
|
|
|
#ifndef NO_COMPARISON |
|
double currentTime = clock() / double(CLOCKS_PER_SEC); |
|
#endif |
|
cv::dctDenoising(src, currentResult, sigma[i], psize[i]); |
|
#ifndef NO_COMPARISON |
|
currentTime = clock() / double(CLOCKS_PER_SEC) - currentTime; |
|
std::cout << "---- dct denoising time = " << currentTime << " (sec) ----" << std::endl; |
|
#endif |
|
|
|
cv::Mat sqrError1 = ( currentResult - previousResult ) |
|
.mul( currentResult - previousResult ); |
|
cv::Scalar mse1 = cv::sum(sqrError1) / cv::Scalar::all( sqrError1.total()*sqrError1.channels() ); |
|
double psnr1 = 10*log10(3*255*255/(mse1[0] + mse1[1] + mse1[2])) - psnr; |
|
#ifndef NO_COMPARISON |
|
std::cout << "---- dct PSNR rate = " << psnr1 << " ----" << std::endl; |
|
#endif |
|
|
|
#ifndef NO_COMPARISON |
|
double fastNlMeansTime = clock() / double(CLOCKS_PER_SEC); |
|
|
|
if ( src.channels() == 3 ) |
|
cv::fastNlMeansDenoisingColored(src, fastNlMeansResult); |
|
else if ( src.channels() == 1 ) |
|
cv::fastNlMeansDenoising(src, fastNlMeansResult); |
|
|
|
fastNlMeansTime = clock() / double(CLOCKS_PER_SEC) - fastNlMeansTime; |
|
#ifdef NO_COMPARISON |
|
std::cout << "---- nonlocal means denoising time = " << fastNlMeansTime << " (sec) ----" << std::endl; |
|
#endif |
|
|
|
cv::Mat sqrError2 = ( fastNlMeansResult - previousResult ) |
|
.mul( fastNlMeansResult - previousResult ); |
|
cv::Scalar mse2 = cv::sum(sqrError2) / cv::Scalar::all( sqrError2.total()*sqrError2.channels() ); |
|
double psnr2 = 10*log10(3*255*255/(mse2[0] + mse2[1] + mse2[2])) - psnr; |
|
std::cout << "---- nonlocal means PSNR rate = " << psnr2 << " ----" << std::endl; |
|
#endif |
|
|
|
EXPECT_GE( psnr1, psnrThreshold[i] ); |
|
} |
|
} |
|
} |