Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

444 lines
14 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Author: The "adaskit Team" at Fixstars Corporation
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
#ifdef _WIN32
#define popcnt64 __popcnt64
#else
#define popcnt64 __builtin_popcountll
#endif
#include "opencv2/core/cuda.hpp"
namespace cv { namespace cuda { namespace device {
namespace stereosgm
{
namespace census_transform
{
void censusTransform(const GpuMat& src, GpuMat& dest, cv::cuda::Stream& stream);
}
namespace path_aggregation
{
namespace horizontal
{
template <unsigned int MAX_DISPARITY>
void aggregateLeft2RightPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
template <unsigned int MAX_DISPARITY>
void aggregateRight2LeftPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
}
namespace vertical
{
template <unsigned int MAX_DISPARITY>
void aggregateUp2DownPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
template <unsigned int MAX_DISPARITY>
void aggregateDown2UpPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
}
namespace oblique
{
template <unsigned int MAX_DISPARITY>
void aggregateUpleft2DownrightPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
template <unsigned int MAX_DISPARITY>
void aggregateUpright2DownleftPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
template <unsigned int MAX_DISPARITY>
void aggregateDownright2UpleftPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
template <unsigned int MAX_DISPARITY>
void aggregateDownleft2UprightPath(
const GpuMat& left,
const GpuMat& right,
GpuMat& dest,
unsigned int p1,
unsigned int p2,
int min_disp,
Stream& stream);
}
} // namespace path_aggregation
namespace winner_takes_all
{
template <size_t MAX_DISPARITY>
void winnerTakesAll(const GpuMat& src, GpuMat& left, GpuMat& right, float uniqueness, bool subpixel, int mode, cv::cuda::Stream& stream);
}
} // namespace stereosgm
}}} // namespace cv { namespace cuda { namespace device {
namespace opencv_test { namespace {
void census_transform(const cv::Mat& src, cv::Mat& dst)
{
const int hor = 9 / 2, ver = 7 / 2;
dst.create(src.size(), CV_32SC1);
dst = 0;
for (int y = ver; y < static_cast<int>(src.rows) - ver; ++y) {
for (int x = hor; x < static_cast<int>(src.cols) - hor; ++x) {
int32_t value = 0;
for (int dy = -ver; dy <= 0; ++dy) {
for (int dx = -hor; dx <= (dy == 0 ? -1 : hor); ++dx) {
const auto a = src.at<uint8_t>(y + dy, x + dx);
const auto b = src.at<uint8_t>(y - dy, x - dx);
value <<= 1;
if (a > b) { value |= 1; }
}
}
dst.at<int32_t>(y, x) = value;
}
}
}
PARAM_TEST_CASE(StereoSGM_CensusTransformImage, cv::cuda::DeviceInfo, std::string, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
std::string path;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
path = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(StereoSGM_CensusTransformImage, Image)
{
cv::Mat image = readImage(path, cv::IMREAD_GRAYSCALE);
cv::Mat dst_gold;
census_transform(image, dst_gold);
cv::cuda::GpuMat g_dst;
g_dst.create(image.size(), CV_32SC1);
cv::cuda::device::stereosgm::census_transform::censusTransform(loadMat(image, useRoi), g_dst, cv::cuda::Stream::Null());
cv::Mat dst;
g_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0);
}
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_CensusTransformImage, testing::Combine(
ALL_DEVICES,
testing::Values("stereobm/aloe-L.png", "stereobm/aloe-R.png"),
WHOLE_SUBMAT));
PARAM_TEST_CASE(StereoSGM_CensusTransformRandom, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(StereoSGM_CensusTransformRandom, Random)
{
cv::Mat image = randomMat(size, CV_8UC1);
cv::Mat dst_gold;
census_transform(image, dst_gold);
cv::cuda::GpuMat g_dst;
g_dst.create(image.size(), CV_32SC1);
cv::cuda::device::stereosgm::census_transform::censusTransform(loadMat(image, useRoi), g_dst, cv::cuda::Stream::Null());
cv::Mat dst;
g_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0);
}
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_CensusTransformRandom, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
static void path_aggregation(
const cv::Mat& left,
const cv::Mat& right,
cv::Mat& dst,
int max_disparity, int min_disparity, int p1, int p2,
int dx, int dy)
{
const int width = left.cols;
const int height = left.rows;
dst.create(cv::Size(width * height * max_disparity, 1), CV_8UC1);
std::vector<int> before(max_disparity);
for (int i = (dy < 0 ? height - 1 : 0); 0 <= i && i < height; i += (dy < 0 ? -1 : 1)) {
for (int j = (dx < 0 ? width - 1 : 0); 0 <= j && j < width; j += (dx < 0 ? -1 : 1)) {
const int i2 = i - dy, j2 = j - dx;
const bool inside = (0 <= i2 && i2 < height && 0 <= j2 && j2 < width);
for (int k = 0; k < max_disparity; ++k) {
before[k] = inside ? dst.at<uint8_t>(0, k + (j2 + i2 * width) * max_disparity) : 0;
}
const int min_cost = *min_element(before.begin(), before.end());
for (int k = 0; k < max_disparity; ++k) {
const auto l = left.at<int32_t>(i, j);
const auto r = (k + min_disparity > j ? 0 : right.at<int32_t>(i, j - k - min_disparity));
int cost = std::min(before[k] - min_cost, p2);
if (k > 0) {
cost = std::min(cost, before[k - 1] - min_cost + p1);
}
if (k + 1 < max_disparity) {
cost = std::min(cost, before[k + 1] - min_cost + p1);
}
cost += static_cast<int>(popcnt64(l ^ r));
dst.at<uint8_t>(0, k + (j + i * width) * max_disparity) = static_cast<uint8_t>(cost);
}
}
}
}
static constexpr size_t DISPARITY = 128;
static constexpr int P1 = 10;
static constexpr int P2 = 120;
PARAM_TEST_CASE(StereoSGM_PathAggregation, cv::cuda::DeviceInfo, cv::Size, UseRoi, int)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
int minDisp;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
minDisp = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
template<typename T>
void test_path_aggregation(T func, int dx, int dy)
{
cv::Mat left_image = randomMat(size, CV_32SC1, 0.0, static_cast<double>(std::numeric_limits<int32_t>::max()));
cv::Mat right_image = randomMat(size, CV_32SC1, 0.0, static_cast<double>(std::numeric_limits<int32_t>::max()));
cv::Mat dst_gold;
path_aggregation(left_image, right_image, dst_gold, DISPARITY, minDisp, P1, P2, dx, dy);
cv::cuda::GpuMat g_dst;
g_dst.create(cv::Size(left_image.cols * left_image.rows * DISPARITY, 1), CV_8UC1);
func(loadMat(left_image, useRoi), loadMat(right_image, useRoi), g_dst, P1, P2, minDisp, cv::cuda::Stream::Null());
cv::Mat dst;
g_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0);
}
};
CUDA_TEST_P(StereoSGM_PathAggregation, RandomLeft2Right)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::horizontal::aggregateLeft2RightPath<DISPARITY>, 1, 0);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomRight2Left)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::horizontal::aggregateRight2LeftPath<DISPARITY>, -1, 0);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUp2Down)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::vertical::aggregateUp2DownPath<DISPARITY>, 0, 1);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDown2Up)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::vertical::aggregateDown2UpPath<DISPARITY>, 0, -1);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUpLeft2DownRight)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateUpleft2DownrightPath<DISPARITY>, 1, 1);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUpRight2DownLeft)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateUpright2DownleftPath<DISPARITY>, -1, 1);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDownRight2UpLeft)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateDownright2UpleftPath<DISPARITY>, -1, -1);
}
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDownLeft2UpRight)
{
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateDownleft2UprightPath<DISPARITY>, 1, -1);
}
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_PathAggregation, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT,
testing::Values(0, 1, 10)));
void winner_takes_all_left(
const cv::Mat& src,
cv::Mat& dst,
int width, int height, int disparity, int num_paths,
float uniqueness, bool subpixel)
{
dst.create(cv::Size(width, height), CV_16UC1);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
std::vector<std::pair<int, int>> v;
for (int k = 0; k < disparity; ++k) {
int cost_sum = 0;
for (int p = 0; p < num_paths; ++p) {
cost_sum += static_cast<int>(src.at<uint8_t>(0,
p * disparity * width * height +
i * disparity * width +
j * disparity +
k));
}
v.emplace_back(cost_sum, static_cast<int>(k));
}
const auto ite = std::min_element(v.begin(), v.end());
assert(ite != v.end());
const auto best = *ite;
const int best_cost = best.first;
int best_disp = best.second;
int ans = best_disp;
if (subpixel) {
ans <<= StereoMatcher::DISP_SHIFT;
if (0 < best_disp && best_disp < static_cast<int>(disparity) - 1) {
const int left = v[best_disp - 1].first;
const int right = v[best_disp + 1].first;
const int numer = left - right;
const int denom = left - 2 * best_cost + right;
ans += ((numer << StereoMatcher::DISP_SHIFT) + denom) / (2 * denom);
}
}
for (const auto& p : v) {
const int cost = p.first;
const int disp = p.second;
if (cost * uniqueness < best_cost && abs(disp - best_disp) > 1) {
ans = -1;
break;
}
}
dst.at<uint16_t>(i, j) = static_cast<uint16_t>(ans);
}
}
}
PARAM_TEST_CASE(StereoSGM_WinnerTakesAll, cv::cuda::DeviceInfo, cv::Size, bool, int)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool subpixel;
int mode;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
subpixel = GET_PARAM(2);
mode = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(StereoSGM_WinnerTakesAll, RandomLeft)
{
int num_paths = mode == cv::cuda::StereoSGM::MODE_HH4 ? 4 : 8;
cv::Mat aggregated = randomMat(cv::Size(size.width * size.height * DISPARITY * num_paths, 1), CV_8UC1, 0.0, 32.0);
cv::Mat dst_gold;
winner_takes_all_left(aggregated, dst_gold, size.width, size.height, DISPARITY, num_paths, 0.95f, subpixel);
cv::cuda::GpuMat g_src, g_dst, g_dst_right;
g_src.upload(aggregated);
g_dst.create(size, CV_16UC1);
g_dst_right.create(size, CV_16UC1);
cv::cuda::device::stereosgm::winner_takes_all::winnerTakesAll<DISPARITY>(g_src, g_dst, g_dst_right, 0.95f, subpixel, mode, cv::cuda::Stream::Null());
cv::Mat dst;
g_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0);
}
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_WinnerTakesAll, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(false, true),
testing::Values(cv::cuda::StereoSGM::MODE_HH4, cv::cuda::StereoSGM::MODE_HH)));
}} // namespace
#endif // HAVE_CUDA