You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
444 lines
14 KiB
444 lines
14 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Author: The "adaskit Team" at Fixstars Corporation |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
#ifdef _WIN32 |
|
#define popcnt64 __popcnt64 |
|
#else |
|
#define popcnt64 __builtin_popcountll |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
|
|
namespace cv { namespace cuda { namespace device { |
|
namespace stereosgm |
|
{ |
|
|
|
namespace census_transform |
|
{ |
|
void censusTransform(const GpuMat& src, GpuMat& dest, cv::cuda::Stream& stream); |
|
} |
|
|
|
namespace path_aggregation |
|
{ |
|
namespace horizontal |
|
{ |
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateLeft2RightPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
|
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateRight2LeftPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
} |
|
|
|
namespace vertical |
|
{ |
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateUp2DownPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
|
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateDown2UpPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
} |
|
|
|
namespace oblique |
|
{ |
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateUpleft2DownrightPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
|
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateUpright2DownleftPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
|
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateDownright2UpleftPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
|
|
template <unsigned int MAX_DISPARITY> |
|
void aggregateDownleft2UprightPath( |
|
const GpuMat& left, |
|
const GpuMat& right, |
|
GpuMat& dest, |
|
unsigned int p1, |
|
unsigned int p2, |
|
int min_disp, |
|
Stream& stream); |
|
} |
|
} // namespace path_aggregation |
|
|
|
namespace winner_takes_all |
|
{ |
|
template <size_t MAX_DISPARITY> |
|
void winnerTakesAll(const GpuMat& src, GpuMat& left, GpuMat& right, float uniqueness, bool subpixel, int mode, cv::cuda::Stream& stream); |
|
} |
|
|
|
} // namespace stereosgm |
|
}}} // namespace cv { namespace cuda { namespace device { |
|
|
|
namespace opencv_test { namespace { |
|
|
|
void census_transform(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
const int hor = 9 / 2, ver = 7 / 2; |
|
dst.create(src.size(), CV_32SC1); |
|
dst = 0; |
|
for (int y = ver; y < static_cast<int>(src.rows) - ver; ++y) { |
|
for (int x = hor; x < static_cast<int>(src.cols) - hor; ++x) { |
|
int32_t value = 0; |
|
for (int dy = -ver; dy <= 0; ++dy) { |
|
for (int dx = -hor; dx <= (dy == 0 ? -1 : hor); ++dx) { |
|
const auto a = src.at<uint8_t>(y + dy, x + dx); |
|
const auto b = src.at<uint8_t>(y - dy, x - dx); |
|
value <<= 1; |
|
if (a > b) { value |= 1; } |
|
} |
|
} |
|
dst.at<int32_t>(y, x) = value; |
|
} |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(StereoSGM_CensusTransformImage, cv::cuda::DeviceInfo, std::string, UseRoi) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
std::string path; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
path = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(StereoSGM_CensusTransformImage, Image) |
|
{ |
|
cv::Mat image = readImage(path, cv::IMREAD_GRAYSCALE); |
|
cv::Mat dst_gold; |
|
census_transform(image, dst_gold); |
|
|
|
cv::cuda::GpuMat g_dst; |
|
g_dst.create(image.size(), CV_32SC1); |
|
cv::cuda::device::stereosgm::census_transform::censusTransform(loadMat(image, useRoi), g_dst, cv::cuda::Stream::Null()); |
|
|
|
cv::Mat dst; |
|
g_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_CensusTransformImage, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values("stereobm/aloe-L.png", "stereobm/aloe-R.png"), |
|
WHOLE_SUBMAT)); |
|
|
|
PARAM_TEST_CASE(StereoSGM_CensusTransformRandom, cv::cuda::DeviceInfo, cv::Size, UseRoi) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(StereoSGM_CensusTransformRandom, Random) |
|
{ |
|
cv::Mat image = randomMat(size, CV_8UC1); |
|
cv::Mat dst_gold; |
|
census_transform(image, dst_gold); |
|
|
|
cv::cuda::GpuMat g_dst; |
|
g_dst.create(image.size(), CV_32SC1); |
|
cv::cuda::device::stereosgm::census_transform::censusTransform(loadMat(image, useRoi), g_dst, cv::cuda::Stream::Null()); |
|
|
|
cv::Mat dst; |
|
g_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_CensusTransformRandom, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
WHOLE_SUBMAT)); |
|
|
|
static void path_aggregation( |
|
const cv::Mat& left, |
|
const cv::Mat& right, |
|
cv::Mat& dst, |
|
int max_disparity, int min_disparity, int p1, int p2, |
|
int dx, int dy) |
|
{ |
|
const int width = left.cols; |
|
const int height = left.rows; |
|
dst.create(cv::Size(width * height * max_disparity, 1), CV_8UC1); |
|
std::vector<int> before(max_disparity); |
|
for (int i = (dy < 0 ? height - 1 : 0); 0 <= i && i < height; i += (dy < 0 ? -1 : 1)) { |
|
for (int j = (dx < 0 ? width - 1 : 0); 0 <= j && j < width; j += (dx < 0 ? -1 : 1)) { |
|
const int i2 = i - dy, j2 = j - dx; |
|
const bool inside = (0 <= i2 && i2 < height && 0 <= j2 && j2 < width); |
|
for (int k = 0; k < max_disparity; ++k) { |
|
before[k] = inside ? dst.at<uint8_t>(0, k + (j2 + i2 * width) * max_disparity) : 0; |
|
} |
|
const int min_cost = *min_element(before.begin(), before.end()); |
|
for (int k = 0; k < max_disparity; ++k) { |
|
const auto l = left.at<int32_t>(i, j); |
|
const auto r = (k + min_disparity > j ? 0 : right.at<int32_t>(i, j - k - min_disparity)); |
|
int cost = std::min(before[k] - min_cost, p2); |
|
if (k > 0) { |
|
cost = std::min(cost, before[k - 1] - min_cost + p1); |
|
} |
|
if (k + 1 < max_disparity) { |
|
cost = std::min(cost, before[k + 1] - min_cost + p1); |
|
} |
|
cost += static_cast<int>(popcnt64(l ^ r)); |
|
dst.at<uint8_t>(0, k + (j + i * width) * max_disparity) = static_cast<uint8_t>(cost); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static constexpr size_t DISPARITY = 128; |
|
static constexpr int P1 = 10; |
|
static constexpr int P2 = 120; |
|
|
|
PARAM_TEST_CASE(StereoSGM_PathAggregation, cv::cuda::DeviceInfo, cv::Size, UseRoi, int) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
bool useRoi; |
|
int minDisp; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
minDisp = GET_PARAM(3); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
|
|
template<typename T> |
|
void test_path_aggregation(T func, int dx, int dy) |
|
{ |
|
cv::Mat left_image = randomMat(size, CV_32SC1, 0.0, static_cast<double>(std::numeric_limits<int32_t>::max())); |
|
cv::Mat right_image = randomMat(size, CV_32SC1, 0.0, static_cast<double>(std::numeric_limits<int32_t>::max())); |
|
cv::Mat dst_gold; |
|
path_aggregation(left_image, right_image, dst_gold, DISPARITY, minDisp, P1, P2, dx, dy); |
|
|
|
cv::cuda::GpuMat g_dst; |
|
g_dst.create(cv::Size(left_image.cols * left_image.rows * DISPARITY, 1), CV_8UC1); |
|
func(loadMat(left_image, useRoi), loadMat(right_image, useRoi), g_dst, P1, P2, minDisp, cv::cuda::Stream::Null()); |
|
|
|
cv::Mat dst; |
|
g_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomLeft2Right) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::horizontal::aggregateLeft2RightPath<DISPARITY>, 1, 0); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomRight2Left) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::horizontal::aggregateRight2LeftPath<DISPARITY>, -1, 0); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUp2Down) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::vertical::aggregateUp2DownPath<DISPARITY>, 0, 1); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDown2Up) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::vertical::aggregateDown2UpPath<DISPARITY>, 0, -1); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUpLeft2DownRight) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateUpleft2DownrightPath<DISPARITY>, 1, 1); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomUpRight2DownLeft) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateUpright2DownleftPath<DISPARITY>, -1, 1); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDownRight2UpLeft) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateDownright2UpleftPath<DISPARITY>, -1, -1); |
|
} |
|
|
|
CUDA_TEST_P(StereoSGM_PathAggregation, RandomDownLeft2UpRight) |
|
{ |
|
test_path_aggregation(cv::cuda::device::stereosgm::path_aggregation::oblique::aggregateDownleft2UprightPath<DISPARITY>, 1, -1); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_PathAggregation, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
WHOLE_SUBMAT, |
|
testing::Values(0, 1, 10))); |
|
|
|
|
|
void winner_takes_all_left( |
|
const cv::Mat& src, |
|
cv::Mat& dst, |
|
int width, int height, int disparity, int num_paths, |
|
float uniqueness, bool subpixel) |
|
{ |
|
dst.create(cv::Size(width, height), CV_16UC1); |
|
for (int i = 0; i < height; ++i) { |
|
for (int j = 0; j < width; ++j) { |
|
std::vector<std::pair<int, int>> v; |
|
for (int k = 0; k < disparity; ++k) { |
|
int cost_sum = 0; |
|
for (int p = 0; p < num_paths; ++p) { |
|
cost_sum += static_cast<int>(src.at<uint8_t>(0, |
|
p * disparity * width * height + |
|
i * disparity * width + |
|
j * disparity + |
|
k)); |
|
} |
|
v.emplace_back(cost_sum, static_cast<int>(k)); |
|
} |
|
const auto ite = std::min_element(v.begin(), v.end()); |
|
assert(ite != v.end()); |
|
const auto best = *ite; |
|
const int best_cost = best.first; |
|
int best_disp = best.second; |
|
int ans = best_disp; |
|
if (subpixel) { |
|
ans <<= StereoMatcher::DISP_SHIFT; |
|
if (0 < best_disp && best_disp < static_cast<int>(disparity) - 1) { |
|
const int left = v[best_disp - 1].first; |
|
const int right = v[best_disp + 1].first; |
|
const int numer = left - right; |
|
const int denom = left - 2 * best_cost + right; |
|
ans += ((numer << StereoMatcher::DISP_SHIFT) + denom) / (2 * denom); |
|
} |
|
} |
|
for (const auto& p : v) { |
|
const int cost = p.first; |
|
const int disp = p.second; |
|
if (cost * uniqueness < best_cost && abs(disp - best_disp) > 1) { |
|
ans = -1; |
|
break; |
|
} |
|
} |
|
|
|
dst.at<uint16_t>(i, j) = static_cast<uint16_t>(ans); |
|
} |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(StereoSGM_WinnerTakesAll, cv::cuda::DeviceInfo, cv::Size, bool, int) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
bool subpixel; |
|
int mode; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
subpixel = GET_PARAM(2); |
|
mode = GET_PARAM(3); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(StereoSGM_WinnerTakesAll, RandomLeft) |
|
{ |
|
int num_paths = mode == cv::cuda::StereoSGM::MODE_HH4 ? 4 : 8; |
|
cv::Mat aggregated = randomMat(cv::Size(size.width * size.height * DISPARITY * num_paths, 1), CV_8UC1, 0.0, 32.0); |
|
cv::Mat dst_gold; |
|
winner_takes_all_left(aggregated, dst_gold, size.width, size.height, DISPARITY, num_paths, 0.95f, subpixel); |
|
|
|
cv::cuda::GpuMat g_src, g_dst, g_dst_right; |
|
g_src.upload(aggregated); |
|
g_dst.create(size, CV_16UC1); |
|
g_dst_right.create(size, CV_16UC1); |
|
cv::cuda::device::stereosgm::winner_takes_all::winnerTakesAll<DISPARITY>(g_src, g_dst, g_dst_right, 0.95f, subpixel, mode, cv::cuda::Stream::Null()); |
|
|
|
cv::Mat dst; |
|
g_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_StereoSGM_funcs, StereoSGM_WinnerTakesAll, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(false, true), |
|
testing::Values(cv::cuda::StereoSGM::MODE_HH4, cv::cuda::StereoSGM::MODE_HH))); |
|
|
|
}} // namespace |
|
#endif // HAVE_CUDA
|
|
|