Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

69 lines
1.5 KiB

Structured forests for fast edge detection {#tutorial_ximgproc_prediction}
==========================================
Introduction
------------
In this tutorial you will learn how to use structured forests for the purpose of edge detection in
an image.
Examples
--------
![image](images/01.jpg)
![image](images/02.jpg)
![image](images/03.jpg)
![image](images/04.jpg)
![image](images/05.jpg)
![image](images/06.jpg)
![image](images/07.jpg)
![image](images/08.jpg)
![image](images/09.jpg)
![image](images/10.jpg)
![image](images/11.jpg)
![image](images/12.jpg)
@note binarization techniques like Canny edge detector are applicable to edges produced by both
algorithms (Sobel and StructuredEdgeDetection::detectEdges).
Source Code
-----------
@includelineno ximgproc/samples/structured_edge_detection.cpp
Explanation
-----------
-# **Load source color image**
@snippet ximgproc/samples/structured_edge_detection.cpp imread
-# **Convert source image to float [0;1] range**
@snippet ximgproc/samples/structured_edge_detection.cpp convert
-# **Run main algorithm**
@snippet ximgproc/samples/structured_edge_detection.cpp create
@snippet ximgproc/samples/structured_edge_detection.cpp detect
@snippet ximgproc/samples/structured_edge_detection.cpp nms
-# **Show results**
@snippet ximgproc/samples/structured_edge_detection.cpp imshow
Literature
----------
For more information, refer to the following papers : @cite Dollar2013 @cite Lim2013