You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
422 lines
11 KiB
422 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
Blob::Blob() |
|
{ |
|
CV_DNN_UMAT_ONLY(state = UNINITIALIZED); |
|
} |
|
|
|
Blob::Blob(const BlobShape &shape, int type, int allocFlags) |
|
{ |
|
CV_DNN_UMAT_ONLY(state = UNINITIALIZED); |
|
this->create(shape, type, allocFlags); |
|
} |
|
|
|
Blob::Blob(InputArray data) |
|
{ |
|
#ifndef CV_DNN_UMAT |
|
m = data.getMat(); |
|
#else |
|
CV_Assert(data.isMat() || data.isUMat()); |
|
if (data.isMat()) |
|
{ |
|
m = data.getMat(); |
|
state = HEAD_AT_MAT; |
|
} |
|
else |
|
{ |
|
um = data.getUMat(); |
|
state = HEAD_AT_UMAT; |
|
} |
|
#endif |
|
} |
|
|
|
void Blob::create(const BlobShape &shape, int type, int allocFlags) |
|
{ |
|
#ifndef CV_DNN_UMAT |
|
CV_Assert(allocFlags & ALLOC_MAT); |
|
m.create(shape.dims(), shape.ptr(), type); |
|
#else |
|
CV_Assert(allocFlags & ALLOC_MAT || allocFlags & ALLOC_UMAT); |
|
|
|
if (allocFlags & ALLOC_MAT) |
|
m.create(shape.dims(), shape.ptr(), type); |
|
if (allocFlags & ALLOC_UMAT) |
|
um.create(shape.dims(), shape.ptr(), type); |
|
|
|
if (state == UNINITIALIZED) |
|
{ |
|
if (allocFlags & ALLOC_MAT && allocFlags & ALLOC_UMAT) |
|
state = SYNCED; |
|
else if (allocFlags & ALLOC_MAT) |
|
state = HEAD_AT_MAT; |
|
else |
|
state = HEAD_AT_UMAT; |
|
} |
|
#endif |
|
} |
|
|
|
void Blob::fill(InputArray in) |
|
{ |
|
#ifdef CV_DNN_UMAT |
|
CV_Assert(in.isMat() || in.isUMat()); |
|
if (in.isMat()) |
|
{ |
|
m = in.getMat(); |
|
state = HEAD_AT_MAT; |
|
} |
|
else |
|
{ |
|
um = in.getUMat(); |
|
state = HEAD_AT_UMAT; |
|
} |
|
#else |
|
CV_Assert(in.isMat()); |
|
m = in.getMat(); |
|
#endif |
|
} |
|
|
|
static inline int getMatChannels(const Mat &mat) |
|
{ |
|
return (mat.dims <= 2) ? mat.channels() : mat.size[0]; |
|
} |
|
|
|
static BlobShape getBlobShape(std::vector<Mat> &vmat, int requestedCn = -1) |
|
{ |
|
BlobShape shape(BlobShape::all(4)); |
|
int cnSum = 0, matCn; |
|
|
|
CV_Assert(vmat.size() > 0); |
|
|
|
for (size_t i = 0; i < vmat.size(); i++) |
|
{ |
|
Mat &mat = vmat[i]; |
|
CV_Assert(!mat.empty()); |
|
CV_Assert((mat.dims == 3 && mat.channels() == 1) || mat.dims <= 2); |
|
|
|
matCn = getMatChannels(mat); |
|
cnSum += getMatChannels(mat); |
|
|
|
if (i == 0) |
|
{ |
|
shape[-1] = mat.cols; |
|
shape[-2] = mat.rows; |
|
shape[-3] = (requestedCn <= 0) ? matCn : requestedCn; |
|
} |
|
else |
|
{ |
|
if (mat.cols != shape[-1] || mat.rows != shape[-2]) |
|
CV_Error(Error::StsError, "Each Mat.size() must be equal"); |
|
|
|
if (requestedCn <= 0 && matCn != shape[-3]) |
|
CV_Error(Error::StsError, "Each Mat.chnannels() (or number of planes) must be equal"); |
|
} |
|
} |
|
|
|
if (cnSum % shape[-3] != 0) |
|
CV_Error(Error::StsError, "Total number of channels in vector is not a multiple of requsted channel number"); |
|
|
|
shape[0] = cnSum / shape[-3]; |
|
return shape; |
|
} |
|
|
|
static std::vector<Mat> extractMatVector(InputArray in) |
|
{ |
|
if (in.isMat() || in.isUMat()) |
|
{ |
|
return std::vector<Mat>(1, in.getMat()); |
|
} |
|
else if (in.isMatVector()) |
|
{ |
|
return *static_cast<const std::vector<Mat>*>(in.getObj()); |
|
} |
|
else if (in.isUMatVector()) |
|
{ |
|
std::vector<Mat> vmat; |
|
in.getMatVector(vmat); |
|
return vmat; |
|
} |
|
else |
|
{ |
|
CV_Assert(in.isMat() || in.isMatVector() || in.isUMat() || in.isUMatVector()); |
|
return std::vector<Mat>(); |
|
} |
|
} |
|
|
|
void Blob::batchFromImages(InputArray image, int dstCn) |
|
{ |
|
CV_Assert(dstCn == -1 || dstCn > 0); |
|
std::vector<Mat> inMats = extractMatVector(image); |
|
BlobShape dstShape = getBlobShape(inMats, dstCn); |
|
|
|
int dtype = CV_32F; |
|
this->create(dstShape, dtype, ALLOC_MAT); |
|
uchar *dstPtr = this->matRef().ptr(); |
|
int elemSize = CV_ELEM_SIZE(dtype); |
|
|
|
std::vector<Mat> wrapBuf(dstShape[-3]); |
|
for (size_t i = 0; i < inMats.size(); i++) |
|
{ |
|
Mat inMat = inMats[i]; |
|
|
|
if (inMat.dims <= 2) |
|
{ |
|
inMat.convertTo(inMat, dtype); |
|
|
|
wrapBuf.resize(0); |
|
for (int cn = 0; cn < inMat.channels(); cn++) |
|
{ |
|
wrapBuf.push_back(Mat(inMat.rows, inMat.cols, dtype, dstPtr)); |
|
dstPtr += elemSize * inMat.total(); |
|
} |
|
|
|
cv::split(inMat, wrapBuf); |
|
} |
|
else |
|
{ |
|
inMat.convertTo(Mat(inMat.dims, inMat.size, dtype, dstPtr), dtype); |
|
dstPtr += elemSize * inMat.total(); |
|
} |
|
} |
|
} |
|
|
|
Blob Blob::fromImages(InputArray image, int dstCn) |
|
{ |
|
Blob res; |
|
res.batchFromImages(image, dstCn); |
|
return res; |
|
} |
|
|
|
void Blob::fill(const BlobShape &shape, int type, void *data, bool deepCopy) |
|
{ |
|
if (deepCopy) |
|
{ |
|
create(shape, type); |
|
memcpy(ptr(), data, this->total() * CV_ELEM_SIZE(type)); |
|
} |
|
else |
|
{ |
|
m = Mat(shape.dims(), shape.ptr(), type, data); |
|
} |
|
CV_DNN_UMAT_ONLY(state = HEAD_AT_MAT); |
|
} |
|
|
|
void Blob::setTo(InputArray value, int allocFlags) |
|
{ |
|
#ifdef CV_DNN_UMAT |
|
if (allocFlags == -1) |
|
{ |
|
if (state == HEAD_AT_UMAT) |
|
um.setTo(value); |
|
else if (state == HEAD_AT_MAT) |
|
m.setTo(value); |
|
else //SYNCED or UNINITIALIZED |
|
{ |
|
um.setTo(value); |
|
m.setTo(value); |
|
|
|
if (state == UNINITIALIZED) |
|
state = SYNCED; |
|
} |
|
} |
|
else if (allocFlags == ALLOC_BOTH) |
|
{ |
|
m.setTo(value); |
|
um.setTo(value); |
|
state = SYNCED; |
|
} |
|
else if (allocFlags == ALLOC_MAT) |
|
{ |
|
matRef().setTo(value); |
|
} |
|
else if (allocFlags == ALLOC_UMAT) |
|
{ |
|
umatRef().setTo(value); |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsBadArg, "allocFlags sholud be -1 or one of Blob::AllocFlag values"); |
|
} |
|
#else |
|
m.setTo(value); |
|
#endif |
|
} |
|
|
|
void Blob::updateMat(bool syncData) const |
|
{ |
|
#ifdef CV_DNN_UMAT |
|
if (state == UNINITIALIZED || state == SYNCED || state == HEAD_AT_MAT) |
|
{ |
|
return; |
|
} |
|
else if (state == HEAD_AT_UMAT) |
|
{ |
|
if (syncData) |
|
um.copyTo(m); |
|
else |
|
m.create(dims(), sizes(), type()); |
|
state = SYNCED; |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsInternal, ""); |
|
} |
|
#else |
|
(void)syncData; |
|
#endif |
|
} |
|
|
|
void Blob::updateUMat(bool syncData) const |
|
{ |
|
#ifdef CV_DNN_UMAT |
|
if (state == UNINITIALIZED || state == SYNCED || state == HEAD_AT_UMAT) |
|
{ |
|
return; |
|
} |
|
else if (state == HEAD_AT_MAT) |
|
{ |
|
if (syncData) |
|
m.copyTo(um); |
|
else |
|
um.create(dims(), sizes(), type()); |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsInternal, ""); |
|
} |
|
#else |
|
(void)syncData; |
|
#endif |
|
} |
|
|
|
void Blob::sync() const |
|
{ |
|
updateMat(); |
|
updateUMat(); |
|
} |
|
|
|
Vec4i Blob::shape4() const |
|
{ |
|
return Vec4i(num(), channels(), rows(), cols()); |
|
} |
|
|
|
//BlobShape |
|
|
|
std::ostream &operator<< (std::ostream &stream, const BlobShape &shape) |
|
{ |
|
stream << "["; |
|
|
|
for (int i = 0; i < shape.dims() - 1; i++) |
|
stream << shape[i] << ", "; |
|
if (shape.dims() > 0) |
|
stream << shape[-1]; |
|
|
|
return stream << "]"; |
|
} |
|
|
|
BlobShape computeShapeByReshapeMask(const BlobShape &srcShape, const BlobShape &maskShape, Range srcRange /*= Range::all()*/) |
|
{ |
|
if (srcRange == Range::all()) |
|
srcRange = Range(0, srcShape.dims()); |
|
else |
|
{ |
|
int sz = srcRange.size(); |
|
srcRange.start = srcShape.canonicalAxis(srcRange.start); |
|
srcRange.end = (srcRange.end == INT_MAX) ? srcShape.dims() : srcRange.start + sz; |
|
} |
|
|
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShape.dims()); |
|
BlobShape dstShape(srcShape.dims() - srcRange.size() + maskShape.dims(), (const int*)NULL); |
|
|
|
std::copy(srcShape.ptr(), srcShape.ptr() + srcRange.start, dstShape.ptr()); |
|
std::copy(srcShape.ptr() + srcRange.end, srcShape.ptr() + srcShape.dims(), dstShape.ptr() + srcRange.start + maskShape.dims()); |
|
|
|
int inferDim = -1; |
|
for (int i = 0; i < maskShape.dims(); i++) |
|
{ |
|
if (maskShape[i] > 0) |
|
{ |
|
dstShape[srcRange.start + i] = maskShape[i]; |
|
} |
|
else if (maskShape[i] == 0) |
|
{ |
|
if (srcRange.start + i >= srcShape.dims()) |
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i)); |
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i]; |
|
} |
|
else if (maskShape[i] == -1) |
|
{ |
|
if (inferDim != -1) |
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)"); |
|
inferDim = srcRange.start + i; |
|
dstShape[inferDim] = 1; |
|
} |
|
else |
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1"); |
|
} |
|
|
|
if (inferDim != -1) |
|
{ |
|
ptrdiff_t srcTotal = srcShape.total(); |
|
ptrdiff_t dstTotal = dstShape.total(); |
|
if (srcTotal % dstTotal != 0) |
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1"); |
|
|
|
dstShape[inferDim] = (int)(srcTotal / dstTotal); |
|
} |
|
else |
|
{ |
|
CV_Assert(srcShape.total() == dstShape.total()); |
|
} |
|
|
|
return dstShape; |
|
} |
|
|
|
} |
|
}
|
|
|