Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

422 lines
11 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
{
namespace dnn
{
Blob::Blob()
{
CV_DNN_UMAT_ONLY(state = UNINITIALIZED);
}
Blob::Blob(const BlobShape &shape, int type, int allocFlags)
{
CV_DNN_UMAT_ONLY(state = UNINITIALIZED);
this->create(shape, type, allocFlags);
}
Blob::Blob(InputArray data)
{
#ifndef CV_DNN_UMAT
m = data.getMat();
#else
CV_Assert(data.isMat() || data.isUMat());
if (data.isMat())
{
m = data.getMat();
state = HEAD_AT_MAT;
}
else
{
um = data.getUMat();
state = HEAD_AT_UMAT;
}
#endif
}
void Blob::create(const BlobShape &shape, int type, int allocFlags)
{
#ifndef CV_DNN_UMAT
CV_Assert(allocFlags & ALLOC_MAT);
m.create(shape.dims(), shape.ptr(), type);
#else
CV_Assert(allocFlags & ALLOC_MAT || allocFlags & ALLOC_UMAT);
if (allocFlags & ALLOC_MAT)
m.create(shape.dims(), shape.ptr(), type);
if (allocFlags & ALLOC_UMAT)
um.create(shape.dims(), shape.ptr(), type);
if (state == UNINITIALIZED)
{
if (allocFlags & ALLOC_MAT && allocFlags & ALLOC_UMAT)
state = SYNCED;
else if (allocFlags & ALLOC_MAT)
state = HEAD_AT_MAT;
else
state = HEAD_AT_UMAT;
}
#endif
}
void Blob::fill(InputArray in)
{
#ifdef CV_DNN_UMAT
CV_Assert(in.isMat() || in.isUMat());
if (in.isMat())
{
m = in.getMat();
state = HEAD_AT_MAT;
}
else
{
um = in.getUMat();
state = HEAD_AT_UMAT;
}
#else
CV_Assert(in.isMat());
m = in.getMat();
#endif
}
static inline int getMatChannels(const Mat &mat)
{
return (mat.dims <= 2) ? mat.channels() : mat.size[0];
}
static BlobShape getBlobShape(std::vector<Mat> &vmat, int requestedCn = -1)
{
BlobShape shape(BlobShape::all(4));
int cnSum = 0, matCn;
CV_Assert(vmat.size() > 0);
for (size_t i = 0; i < vmat.size(); i++)
{
Mat &mat = vmat[i];
CV_Assert(!mat.empty());
CV_Assert((mat.dims == 3 && mat.channels() == 1) || mat.dims <= 2);
matCn = getMatChannels(mat);
cnSum += getMatChannels(mat);
if (i == 0)
{
shape[-1] = mat.cols;
shape[-2] = mat.rows;
shape[-3] = (requestedCn <= 0) ? matCn : requestedCn;
}
else
{
if (mat.cols != shape[-1] || mat.rows != shape[-2])
CV_Error(Error::StsError, "Each Mat.size() must be equal");
if (requestedCn <= 0 && matCn != shape[-3])
CV_Error(Error::StsError, "Each Mat.chnannels() (or number of planes) must be equal");
}
}
if (cnSum % shape[-3] != 0)
CV_Error(Error::StsError, "Total number of channels in vector is not a multiple of requsted channel number");
shape[0] = cnSum / shape[-3];
return shape;
}
static std::vector<Mat> extractMatVector(InputArray in)
{
if (in.isMat() || in.isUMat())
{
return std::vector<Mat>(1, in.getMat());
}
else if (in.isMatVector())
{
return *static_cast<const std::vector<Mat>*>(in.getObj());
}
else if (in.isUMatVector())
{
std::vector<Mat> vmat;
in.getMatVector(vmat);
return vmat;
}
else
{
CV_Assert(in.isMat() || in.isMatVector() || in.isUMat() || in.isUMatVector());
return std::vector<Mat>();
}
}
void Blob::batchFromImages(InputArray image, int dstCn)
{
CV_Assert(dstCn == -1 || dstCn > 0);
std::vector<Mat> inMats = extractMatVector(image);
BlobShape dstShape = getBlobShape(inMats, dstCn);
int dtype = CV_32F;
this->create(dstShape, dtype, ALLOC_MAT);
uchar *dstPtr = this->matRef().ptr();
int elemSize = CV_ELEM_SIZE(dtype);
std::vector<Mat> wrapBuf(dstShape[-3]);
for (size_t i = 0; i < inMats.size(); i++)
{
Mat inMat = inMats[i];
if (inMat.dims <= 2)
{
inMat.convertTo(inMat, dtype);
wrapBuf.resize(0);
for (int cn = 0; cn < inMat.channels(); cn++)
{
wrapBuf.push_back(Mat(inMat.rows, inMat.cols, dtype, dstPtr));
dstPtr += elemSize * inMat.total();
}
cv::split(inMat, wrapBuf);
}
else
{
inMat.convertTo(Mat(inMat.dims, inMat.size, dtype, dstPtr), dtype);
dstPtr += elemSize * inMat.total();
}
}
}
Blob Blob::fromImages(InputArray image, int dstCn)
{
Blob res;
res.batchFromImages(image, dstCn);
return res;
}
void Blob::fill(const BlobShape &shape, int type, void *data, bool deepCopy)
{
if (deepCopy)
{
create(shape, type);
memcpy(ptr(), data, this->total() * CV_ELEM_SIZE(type));
}
else
{
m = Mat(shape.dims(), shape.ptr(), type, data);
}
CV_DNN_UMAT_ONLY(state = HEAD_AT_MAT);
}
void Blob::setTo(InputArray value, int allocFlags)
{
#ifdef CV_DNN_UMAT
if (allocFlags == -1)
{
if (state == HEAD_AT_UMAT)
um.setTo(value);
else if (state == HEAD_AT_MAT)
m.setTo(value);
else //SYNCED or UNINITIALIZED
{
um.setTo(value);
m.setTo(value);
if (state == UNINITIALIZED)
state = SYNCED;
}
}
else if (allocFlags == ALLOC_BOTH)
{
m.setTo(value);
um.setTo(value);
state = SYNCED;
}
else if (allocFlags == ALLOC_MAT)
{
matRef().setTo(value);
}
else if (allocFlags == ALLOC_UMAT)
{
umatRef().setTo(value);
}
else
{
CV_Error(Error::StsBadArg, "allocFlags sholud be -1 or one of Blob::AllocFlag values");
}
#else
m.setTo(value);
#endif
}
void Blob::updateMat(bool syncData) const
{
#ifdef CV_DNN_UMAT
if (state == UNINITIALIZED || state == SYNCED || state == HEAD_AT_MAT)
{
return;
}
else if (state == HEAD_AT_UMAT)
{
if (syncData)
um.copyTo(m);
else
m.create(dims(), sizes(), type());
state = SYNCED;
}
else
{
CV_Error(Error::StsInternal, "");
}
#else
(void)syncData;
#endif
}
void Blob::updateUMat(bool syncData) const
{
#ifdef CV_DNN_UMAT
if (state == UNINITIALIZED || state == SYNCED || state == HEAD_AT_UMAT)
{
return;
}
else if (state == HEAD_AT_MAT)
{
if (syncData)
m.copyTo(um);
else
um.create(dims(), sizes(), type());
}
else
{
CV_Error(Error::StsInternal, "");
}
#else
(void)syncData;
#endif
}
void Blob::sync() const
{
updateMat();
updateUMat();
}
Vec4i Blob::shape4() const
{
return Vec4i(num(), channels(), rows(), cols());
}
//BlobShape
std::ostream &operator<< (std::ostream &stream, const BlobShape &shape)
{
stream << "[";
for (int i = 0; i < shape.dims() - 1; i++)
stream << shape[i] << ", ";
if (shape.dims() > 0)
stream << shape[-1];
return stream << "]";
}
BlobShape computeShapeByReshapeMask(const BlobShape &srcShape, const BlobShape &maskShape, Range srcRange /*= Range::all()*/)
{
if (srcRange == Range::all())
srcRange = Range(0, srcShape.dims());
else
{
int sz = srcRange.size();
srcRange.start = srcShape.canonicalAxis(srcRange.start);
srcRange.end = (srcRange.end == INT_MAX) ? srcShape.dims() : srcRange.start + sz;
}
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShape.dims());
BlobShape dstShape(srcShape.dims() - srcRange.size() + maskShape.dims(), (const int*)NULL);
std::copy(srcShape.ptr(), srcShape.ptr() + srcRange.start, dstShape.ptr());
std::copy(srcShape.ptr() + srcRange.end, srcShape.ptr() + srcShape.dims(), dstShape.ptr() + srcRange.start + maskShape.dims());
int inferDim = -1;
for (int i = 0; i < maskShape.dims(); i++)
{
if (maskShape[i] > 0)
{
dstShape[srcRange.start + i] = maskShape[i];
}
else if (maskShape[i] == 0)
{
if (srcRange.start + i >= srcShape.dims())
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i));
dstShape[srcRange.start + i] = srcShape[srcRange.start + i];
}
else if (maskShape[i] == -1)
{
if (inferDim != -1)
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)");
inferDim = srcRange.start + i;
dstShape[inferDim] = 1;
}
else
CV_Error(Error::StsBadArg, "maskShape[i] >= -1");
}
if (inferDim != -1)
{
ptrdiff_t srcTotal = srcShape.total();
ptrdiff_t dstTotal = dstShape.total();
if (srcTotal % dstTotal != 0)
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1");
dstShape[inferDim] = (int)(srcTotal / dstTotal);
}
else
{
CV_Assert(srcShape.total() == dstShape.total());
}
return dstShape;
}
}
}