You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
6.5 KiB
195 lines
6.5 KiB
/*/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "tldUtils.hpp" |
|
|
|
|
|
namespace cv |
|
{ |
|
namespace tld |
|
{ |
|
|
|
//Debug functions and variables |
|
Rect2d etalon(14.0, 110.0, 20.0, 20.0); |
|
void myassert(const Mat& img) |
|
{ |
|
int count = 0; |
|
for( int i = 0; i < img.rows; i++ ) |
|
{ |
|
for( int j = 0; j < img.cols; j++ ) |
|
{ |
|
if( img.at<uchar>(i, j) == 0 ) |
|
count++; |
|
} |
|
} |
|
dprintf(("black: %d out of %d (%f)\n", count, img.rows * img.cols, 1.0 * count / img.rows / img.cols)); |
|
} |
|
void printPatch(const Mat_<uchar>& standardPatch) |
|
{ |
|
for( int i = 0; i < standardPatch.rows; i++ ) |
|
{ |
|
for( int j = 0; j < standardPatch.cols; j++ ) |
|
dprintf(("%5.2f, ", (double)standardPatch(i, j))); |
|
dprintf(("\n")); |
|
} |
|
} |
|
std::string type2str(const Mat& mat) |
|
{ |
|
int type = mat.type(); |
|
std::string r; |
|
|
|
uchar depth = type & CV_MAT_DEPTH_MASK; |
|
uchar chans = (uchar)(1 + (type >> CV_CN_SHIFT)); |
|
|
|
switch ( depth ) { |
|
case CV_8U: r = "8U"; break; |
|
case CV_8S: r = "8S"; break; |
|
case CV_16U: r = "16U"; break; |
|
case CV_16S: r = "16S"; break; |
|
case CV_32S: r = "32S"; break; |
|
case CV_32F: r = "32F"; break; |
|
case CV_64F: r = "64F"; break; |
|
default: r = "User"; break; |
|
} |
|
|
|
r += "C"; |
|
r += (chans + '0'); |
|
|
|
return r; |
|
} |
|
|
|
//Scale & Blur image using scale Indx |
|
double scaleAndBlur(const Mat& originalImg, int scale, Mat& scaledImg, Mat& blurredImg, Size GaussBlurKernelSize, double scaleStep) |
|
{ |
|
double dScale = 1.0; |
|
for( int i = 0; i < scale; i++, dScale *= scaleStep ); |
|
Size2d size = originalImg.size(); |
|
size.height /= dScale; size.width /= dScale; |
|
resize(originalImg, scaledImg, size, 0, 0, INTER_LINEAR_EXACT); |
|
GaussianBlur(scaledImg, blurredImg, GaussBlurKernelSize, 0.0); |
|
return dScale; |
|
} |
|
|
|
//Find N-closest BB to the target |
|
void getClosestN(std::vector<Rect2d>& scanGrid, Rect2d bBox, int n, std::vector<Rect2d>& res) |
|
{ |
|
if( n >= (int)scanGrid.size() ) |
|
{ |
|
res.assign(scanGrid.begin(), scanGrid.end()); |
|
return; |
|
} |
|
std::vector<double> overlaps; |
|
overlaps.assign(n, 0.0); |
|
res.assign(scanGrid.begin(), scanGrid.begin() + n); |
|
for( int i = 0; i < n; i++ ) |
|
overlaps[i] = overlap(res[i], bBox); |
|
double otmp; |
|
Rect2d rtmp; |
|
for (int i = 1; i < n; i++) |
|
{ |
|
int j = i; |
|
while (j > 0 && overlaps[j - 1] > overlaps[j]) { |
|
otmp = overlaps[j]; overlaps[j] = overlaps[j - 1]; overlaps[j - 1] = otmp; |
|
rtmp = res[j]; res[j] = res[j - 1]; res[j - 1] = rtmp; |
|
j--; |
|
} |
|
} |
|
|
|
for( int i = n; i < (int)scanGrid.size(); i++ ) |
|
{ |
|
double o = 0.0; |
|
if( (o = overlap(scanGrid[i], bBox)) <= overlaps[0] ) |
|
continue; |
|
int j = 0; |
|
while( j < n && overlaps[j] < o ) |
|
j++; |
|
j--; |
|
for( int k = 0; k < j; overlaps[k] = overlaps[k + 1], res[k] = res[k + 1], k++ ); |
|
overlaps[j] = o; res[j] = scanGrid[i]; |
|
} |
|
} |
|
|
|
//Calculate patch variance |
|
double variance(const Mat& img) |
|
{ |
|
double p = 0, p2 = 0; |
|
p = sum(img)(0); |
|
p2 = norm(img, NORM_L2SQR); |
|
p /= (img.cols * img.rows); |
|
p2 /= (img.cols * img.rows); |
|
|
|
return p2 - p * p; |
|
} |
|
|
|
//Overlap between two BB |
|
double overlap(const Rect2d& r1, const Rect2d& r2) |
|
{ |
|
double a1 = r1.area(), a2 = r2.area(), a0 = (r1&r2).area(); |
|
return a0 / (a1 + a2 - a0); |
|
} |
|
|
|
void resample(const Mat& img, const RotatedRect& r2, Mat_<uchar>& samples) |
|
{ |
|
Mat_<float> M(2, 3), R(2, 2), Si(2, 2), s(2, 1), o(2, 1); |
|
R(0, 0) = (float)cos(r2.angle * CV_PI / 180); R(0, 1) = (float)(-sin(r2.angle * CV_PI / 180)); |
|
R(1, 0) = (float)sin(r2.angle * CV_PI / 180); R(1, 1) = (float)cos(r2.angle * CV_PI / 180); |
|
Si(0, 0) = (float)(samples.cols / r2.size.width); Si(0, 1) = 0.0f; |
|
Si(1, 0) = 0.0f; Si(1, 1) = (float)(samples.rows / r2.size.height); |
|
s(0, 0) = (float)samples.cols; s(1, 0) = (float)samples.rows; |
|
o(0, 0) = r2.center.x; o(1, 0) = r2.center.y; |
|
Mat_<float> A(2, 2), b(2, 1); |
|
A = Si * R; |
|
b = s / 2.0 - Si * R * o; |
|
A.copyTo(M.colRange(Range(0, 2))); |
|
b.copyTo(M.colRange(Range(2, 3))); |
|
warpAffine(img, samples, M, samples.size()); |
|
} |
|
|
|
void resample(const Mat& img, const Rect2d& r2, Mat_<uchar>& samples) |
|
{ |
|
Mat_<float> M(2, 3); |
|
M(0, 0) = (float)(samples.cols / r2.width); M(0, 1) = 0.0f; M(0, 2) = (float)(-r2.x * samples.cols / r2.width); |
|
M(1, 0) = 0.0f; M(1, 1) = (float)(samples.rows / r2.height); M(1, 2) = (float)(-r2.y * samples.rows / r2.height); |
|
warpAffine(img, samples, M, samples.size()); |
|
} |
|
|
|
|
|
}}
|
|
|