Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

195 lines
6.5 KiB

/*///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldUtils.hpp"
namespace cv
{
namespace tld
{
//Debug functions and variables
Rect2d etalon(14.0, 110.0, 20.0, 20.0);
void myassert(const Mat& img)
{
int count = 0;
for( int i = 0; i < img.rows; i++ )
{
for( int j = 0; j < img.cols; j++ )
{
if( img.at<uchar>(i, j) == 0 )
count++;
}
}
dprintf(("black: %d out of %d (%f)\n", count, img.rows * img.cols, 1.0 * count / img.rows / img.cols));
}
void printPatch(const Mat_<uchar>& standardPatch)
{
for( int i = 0; i < standardPatch.rows; i++ )
{
for( int j = 0; j < standardPatch.cols; j++ )
dprintf(("%5.2f, ", (double)standardPatch(i, j)));
dprintf(("\n"));
}
}
std::string type2str(const Mat& mat)
{
int type = mat.type();
std::string r;
uchar depth = type & CV_MAT_DEPTH_MASK;
uchar chans = (uchar)(1 + (type >> CV_CN_SHIFT));
switch ( depth ) {
case CV_8U: r = "8U"; break;
case CV_8S: r = "8S"; break;
case CV_16U: r = "16U"; break;
case CV_16S: r = "16S"; break;
case CV_32S: r = "32S"; break;
case CV_32F: r = "32F"; break;
case CV_64F: r = "64F"; break;
default: r = "User"; break;
}
r += "C";
r += (chans + '0');
return r;
}
//Scale & Blur image using scale Indx
double scaleAndBlur(const Mat& originalImg, int scale, Mat& scaledImg, Mat& blurredImg, Size GaussBlurKernelSize, double scaleStep)
{
double dScale = 1.0;
for( int i = 0; i < scale; i++, dScale *= scaleStep );
Size2d size = originalImg.size();
size.height /= dScale; size.width /= dScale;
resize(originalImg, scaledImg, size, 0, 0, INTER_LINEAR_EXACT);
GaussianBlur(scaledImg, blurredImg, GaussBlurKernelSize, 0.0);
return dScale;
}
//Find N-closest BB to the target
void getClosestN(std::vector<Rect2d>& scanGrid, Rect2d bBox, int n, std::vector<Rect2d>& res)
{
if( n >= (int)scanGrid.size() )
{
res.assign(scanGrid.begin(), scanGrid.end());
return;
}
std::vector<double> overlaps;
overlaps.assign(n, 0.0);
res.assign(scanGrid.begin(), scanGrid.begin() + n);
for( int i = 0; i < n; i++ )
overlaps[i] = overlap(res[i], bBox);
double otmp;
Rect2d rtmp;
for (int i = 1; i < n; i++)
{
int j = i;
while (j > 0 && overlaps[j - 1] > overlaps[j]) {
otmp = overlaps[j]; overlaps[j] = overlaps[j - 1]; overlaps[j - 1] = otmp;
rtmp = res[j]; res[j] = res[j - 1]; res[j - 1] = rtmp;
j--;
}
}
for( int i = n; i < (int)scanGrid.size(); i++ )
{
double o = 0.0;
if( (o = overlap(scanGrid[i], bBox)) <= overlaps[0] )
continue;
int j = 0;
while( j < n && overlaps[j] < o )
j++;
j--;
for( int k = 0; k < j; overlaps[k] = overlaps[k + 1], res[k] = res[k + 1], k++ );
overlaps[j] = o; res[j] = scanGrid[i];
}
}
//Calculate patch variance
double variance(const Mat& img)
{
double p = 0, p2 = 0;
p = sum(img)(0);
p2 = norm(img, NORM_L2SQR);
p /= (img.cols * img.rows);
p2 /= (img.cols * img.rows);
return p2 - p * p;
}
//Overlap between two BB
double overlap(const Rect2d& r1, const Rect2d& r2)
{
double a1 = r1.area(), a2 = r2.area(), a0 = (r1&r2).area();
return a0 / (a1 + a2 - a0);
}
void resample(const Mat& img, const RotatedRect& r2, Mat_<uchar>& samples)
{
Mat_<float> M(2, 3), R(2, 2), Si(2, 2), s(2, 1), o(2, 1);
R(0, 0) = (float)cos(r2.angle * CV_PI / 180); R(0, 1) = (float)(-sin(r2.angle * CV_PI / 180));
R(1, 0) = (float)sin(r2.angle * CV_PI / 180); R(1, 1) = (float)cos(r2.angle * CV_PI / 180);
Si(0, 0) = (float)(samples.cols / r2.size.width); Si(0, 1) = 0.0f;
Si(1, 0) = 0.0f; Si(1, 1) = (float)(samples.rows / r2.size.height);
s(0, 0) = (float)samples.cols; s(1, 0) = (float)samples.rows;
o(0, 0) = r2.center.x; o(1, 0) = r2.center.y;
Mat_<float> A(2, 2), b(2, 1);
A = Si * R;
b = s / 2.0 - Si * R * o;
A.copyTo(M.colRange(Range(0, 2)));
b.copyTo(M.colRange(Range(2, 3)));
warpAffine(img, samples, M, samples.size());
}
void resample(const Mat& img, const Rect2d& r2, Mat_<uchar>& samples)
{
Mat_<float> M(2, 3);
M(0, 0) = (float)(samples.cols / r2.width); M(0, 1) = 0.0f; M(0, 2) = (float)(-r2.x * samples.cols / r2.width);
M(1, 0) = 0.0f; M(1, 1) = (float)(samples.rows / r2.height); M(1, 2) = (float)(-r2.y * samples.rows / r2.height);
warpAffine(img, samples, M, samples.size());
}
}}