You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
6.4 KiB
235 lines
6.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include <iostream> |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/all_layers.hpp> |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static String _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/layers/") + filename; |
|
} |
|
|
|
static void testLayer(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true) |
|
{ |
|
String prototxt = _tf(basename + ".prototxt"); |
|
String caffemodel = _tf(basename + ".caffemodel"); |
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); |
|
String outfile = _tf(basename + ".npy"); |
|
|
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String()); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Blob inp = blobFromNPY(inpfile); |
|
Blob ref = blobFromNPY(outfile); |
|
|
|
net.setBlob(".input", inp); |
|
net.forward(); |
|
Blob out = net.getBlob("output"); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
TEST(Layer_Test_Softmax, Accuracy) |
|
{ |
|
testLayer("layer_softmax"); |
|
} |
|
|
|
TEST(Layer_Test_LRN_spatial, Accuracy) |
|
{ |
|
testLayer("layer_lrn_spatial"); |
|
} |
|
|
|
TEST(Layer_Test_LRN_channels, Accuracy) |
|
{ |
|
testLayer("layer_lrn_channels"); |
|
} |
|
|
|
TEST(Layer_Test_Convolution, Accuracy) |
|
{ |
|
testLayer("layer_convolution", true); |
|
} |
|
|
|
//TODO: move this test into separate file |
|
TEST(Layer_Test_Convolution, AccuracyOCL) |
|
{ |
|
if (cv::ocl::haveOpenCL()) |
|
{ |
|
cv::ocl::setUseOpenCL(true); |
|
testLayer("layer_convolution", true); |
|
cv::ocl::setUseOpenCL(false); |
|
} |
|
} |
|
|
|
TEST(Layer_Test_InnerProduct, Accuracy) |
|
{ |
|
testLayer("layer_inner_product", true); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_max, Accuracy) |
|
{ |
|
testLayer("layer_pooling_max"); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_ave, Accuracy) |
|
{ |
|
testLayer("layer_pooling_ave"); |
|
} |
|
|
|
TEST(Layer_Test_DeConvolution, Accuracy) |
|
{ |
|
testLayer("layer_deconvolution", true, false); |
|
} |
|
|
|
TEST(Layer_Test_MVN, Accuracy) |
|
{ |
|
testLayer("layer_mvn"); |
|
} |
|
|
|
TEST(Layer_Test_Reshape, squeeze) |
|
{ |
|
LayerParams params; |
|
params.set("axis", 2); |
|
params.set("num_axes", 1); |
|
|
|
Blob inp(BlobShape(4, 3, 1, 2)); |
|
std::vector<Blob*> inpVec(1, &inp); |
|
std::vector<Blob> outVec; |
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params); |
|
rl->allocate(inpVec, outVec); |
|
rl->forward(inpVec, outVec); |
|
|
|
EXPECT_EQ(outVec[0].shape(), BlobShape(Vec3i(4, 3, 2))); |
|
} |
|
|
|
TEST(Layer_Test_Reshape_Split_Slice, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt")); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Blob input(BlobShape(Vec2i(6, 12))); |
|
RNG rng(0); |
|
rng.fill(input.matRef(), RNG::UNIFORM, -1, 1); |
|
|
|
net.setBlob(".input", input); |
|
net.forward(); |
|
Blob output = net.getBlob("output"); |
|
|
|
normAssert(input, output); |
|
} |
|
|
|
class Layer_LSTM_Test : public ::testing::Test |
|
{ |
|
public: |
|
int Nx, Nc; |
|
Blob Wh, Wx, b; |
|
Ptr<LSTMLayer> lstm; |
|
|
|
std::vector<Blob> inputs; |
|
std::vector<Blob> outputs; |
|
std::vector<Blob*> inputsPtr; |
|
|
|
Layer_LSTM_Test(int _Nx = 31, int _Nc = 100) |
|
{ |
|
Nx = _Nx; |
|
Nc = _Nc; |
|
|
|
Wh = Blob(BlobShape(Vec2i(4 * Nc, Nc))); |
|
Wx = Blob(BlobShape(Vec2i(4 * Nc, Nx))); |
|
b = Blob(BlobShape(Vec2i(4 * Nc, 1))); |
|
|
|
lstm = LSTMLayer::create(); |
|
lstm->setWeights(Wh, Wx, b); |
|
} |
|
|
|
void allocateAndForward() |
|
{ |
|
inputsPtr.clear(); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
inputsPtr.push_back(&inputs[i]); |
|
|
|
lstm->allocate(inputsPtr, outputs); |
|
lstm->forward(inputsPtr, outputs); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_LSTM_Test, BasicTest_1) |
|
{ |
|
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx))); |
|
allocateAndForward(); |
|
|
|
EXPECT_EQ(outputs.size(), 2); |
|
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc)); |
|
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc)); |
|
} |
|
|
|
TEST_F(Layer_LSTM_Test, BasicTest_2) |
|
{ |
|
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx))); |
|
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc))); |
|
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc))); |
|
allocateAndForward(); |
|
|
|
EXPECT_EQ(outputs.size(), 2); |
|
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc)); |
|
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc)); |
|
} |
|
|
|
}
|
|
|