You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
6.7 KiB
215 lines
6.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <opencv2/core/utility.hpp> |
|
#include <opencv2/saliency.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace saliency; |
|
|
|
static const char* keys = |
|
{ "{@saliency_algorithm | | Saliency algorithm <saliencyAlgorithmType.[saliencyAlgorithmTypeSubType]> }" |
|
"{@video_name | | video name }" |
|
"{@start_frame |1| Start frame }" |
|
"{@training_path |ObjectnessTrainedModel| Path of the folder containing the trained files}" }; |
|
|
|
static void help() |
|
{ |
|
cout << "\nThis example shows the functionality of \"Saliency \"" |
|
"Call:\n" |
|
"./example_saliency_computeSaliency <saliencyAlgorithmSubType> <video_name> <start_frame> \n" |
|
<< endl; |
|
} |
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
|
|
CommandLineParser parser( argc, argv, keys ); |
|
|
|
String saliency_algorithm = parser.get<String>( 0 ); |
|
String video_name = parser.get<String>( 1 ); |
|
int start_frame = parser.get<int>( 2 ); |
|
String training_path = parser.get<String>( 3 ); |
|
|
|
if( saliency_algorithm.empty() || video_name.empty() ) |
|
{ |
|
help(); |
|
return -1; |
|
} |
|
|
|
//open the capture |
|
VideoCapture cap; |
|
cap.open( video_name ); |
|
cap.set( CAP_PROP_POS_FRAMES, start_frame ); |
|
|
|
if( !cap.isOpened() ) |
|
{ |
|
help(); |
|
cout << "***Could not initialize capturing...***\n"; |
|
cout << "Current parameter's value: \n"; |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
|
|
Mat frame; |
|
|
|
//instantiates the specific Saliency |
|
Ptr<Saliency> saliencyAlgorithm; |
|
|
|
Mat binaryMap; |
|
Mat image; |
|
|
|
cap >> frame; |
|
if( frame.empty() ) |
|
{ |
|
return 0; |
|
} |
|
|
|
frame.copyTo( image ); |
|
|
|
if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 ) |
|
{ |
|
Mat saliencyMap; |
|
saliencyAlgorithm = StaticSaliencySpectralResidual::create(); |
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) |
|
{ |
|
StaticSaliencySpectralResidual spec; |
|
spec.computeBinaryMap( saliencyMap, binaryMap ); |
|
|
|
imshow( "Saliency Map", saliencyMap ); |
|
imshow( "Original Image", image ); |
|
imshow( "Binary Map", binaryMap ); |
|
waitKey( 0 ); |
|
} |
|
|
|
} |
|
else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 ) |
|
{ |
|
Mat saliencyMap; |
|
saliencyAlgorithm = StaticSaliencyFineGrained::create(); |
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) |
|
{ |
|
imshow( "Saliency Map", saliencyMap ); |
|
imshow( "Original Image", image ); |
|
waitKey( 0 ); |
|
} |
|
|
|
} |
|
else if( saliency_algorithm.find( "BING" ) == 0 ) |
|
{ |
|
if( training_path.empty() ) |
|
{ |
|
|
|
cout << "Path of trained files missing! " << endl; |
|
return -1; |
|
} |
|
|
|
else |
|
{ |
|
saliencyAlgorithm = ObjectnessBING::create(); |
|
vector<Vec4i> saliencyMap; |
|
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path ); |
|
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( "Results" ); |
|
|
|
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) |
|
{ |
|
int ndet = int(saliencyMap.size()); |
|
std::cout << "Objectness done " << ndet << std::endl; |
|
// The result are sorted by objectness. We only use the first maxd boxes here. |
|
int maxd = 7, step = 255 / maxd, jitter=9; // jitter to seperate single rects |
|
Mat draw = image.clone(); |
|
for (int i = 0; i < std::min(maxd, ndet); i++) { |
|
Vec4i bb = saliencyMap[i]; |
|
Scalar col = Scalar(((i*step)%255), 50, 255-((i*step)%255)); |
|
Point off(theRNG().uniform(-jitter,jitter), theRNG().uniform(-jitter,jitter)); |
|
rectangle(draw, Point(bb[0]+off.x, bb[1]+off.y), Point(bb[2]+off.x, bb[3]+off.y), col, 2); |
|
rectangle(draw, Rect(20, 20+i*10, 10,10), col, -1); // mini temperature scale |
|
} |
|
imshow("BING", draw); |
|
waitKey(); |
|
} |
|
else |
|
{ |
|
std::cout << "No saliency found for " << video_name << std::endl; |
|
} |
|
} |
|
|
|
} |
|
else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 ) |
|
{ |
|
saliencyAlgorithm = MotionSaliencyBinWangApr2014::create(); |
|
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows ); |
|
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init(); |
|
|
|
bool paused = false; |
|
for ( ;; ) |
|
{ |
|
if( !paused ) |
|
{ |
|
|
|
cap >> frame; |
|
if( frame.empty() ) |
|
{ |
|
return 0; |
|
} |
|
cvtColor( frame, frame, COLOR_BGR2GRAY ); |
|
|
|
Mat saliencyMap; |
|
saliencyAlgorithm->computeSaliency( frame, saliencyMap ); |
|
|
|
imshow( "image", frame ); |
|
imshow( "saliencyMap", saliencyMap * 255 ); |
|
} |
|
|
|
char c = (char) waitKey( 2 ); |
|
if( c == 'q' ) |
|
break; |
|
if( c == 'p' ) |
|
paused = !paused; |
|
|
|
} |
|
} |
|
|
|
return 0; |
|
}
|
|
|