You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
7.5 KiB
288 lines
7.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_ONLINEBOOSTING_HPP__ |
|
#define __OPENCV_ONLINEBOOSTING_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
//! @addtogroup tracking |
|
//! @{ |
|
|
|
//TODO based on the original implementation |
|
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml |
|
|
|
class BaseClassifier; |
|
class WeakClassifierHaarFeature; |
|
class EstimatedGaussDistribution; |
|
class ClassifierThreshold; |
|
class Detector; |
|
|
|
class StrongClassifierDirectSelection |
|
{ |
|
public: |
|
|
|
StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit = |
|
0 ); |
|
virtual ~StrongClassifierDirectSelection(); |
|
|
|
void initBaseClassifier(); |
|
|
|
bool update( const Mat& image, int target, float importance = 1.0 ); |
|
float eval( const Mat& response ); |
|
std::vector<int> getSelectedWeakClassifier(); |
|
float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx ); |
|
int getNumBaseClassifier(); |
|
Size getPatchSize() const; |
|
Rect getROI() const; |
|
bool getUseFeatureExchange() const; |
|
int getReplacedClassifier() const; |
|
|
|
void replaceWeakClassifier( int idx ); |
|
int getSwappedClassifier() const; |
|
private: |
|
|
|
//StrongClassifier |
|
int numBaseClassifier; |
|
int numAllWeakClassifier; |
|
int numWeakClassifier; |
|
int iterInit; |
|
BaseClassifier** baseClassifier; |
|
std::vector<float> alpha; |
|
cv::Size patchSize; |
|
|
|
bool useFeatureExchange; |
|
|
|
//StrongClassifierDirectSelection |
|
std::vector<bool> m_errorMask; |
|
std::vector<float> m_errors; |
|
std::vector<float> m_sumErrors; |
|
|
|
Detector* detector; |
|
Rect ROI; |
|
|
|
int replacedClassifier; |
|
int swappedClassifier; |
|
}; |
|
|
|
class BaseClassifier |
|
{ |
|
public: |
|
|
|
BaseClassifier( int numWeakClassifier, int iterationInit ); |
|
BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls ); |
|
|
|
WeakClassifierHaarFeature** getReferenceWeakClassifier() |
|
{ |
|
return weakClassifier; |
|
} |
|
; |
|
void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask ); |
|
int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors ); |
|
int computeReplaceWeakestClassifier( const std::vector<float> & errors ); |
|
void replaceClassifierStatistic( int sourceIndex, int targetIndex ); |
|
int getIdxOfNewWeakClassifier() |
|
{ |
|
return m_idxOfNewWeakClassifier; |
|
} |
|
; |
|
int eval( const Mat& image ); |
|
virtual ~BaseClassifier(); |
|
float getError( int curWeakClassifier ); |
|
void getErrors( float* errors ); |
|
int getSelectedClassifier() const; |
|
void replaceWeakClassifier( int index ); |
|
|
|
protected: |
|
|
|
void generateRandomClassifier(); |
|
WeakClassifierHaarFeature** weakClassifier; |
|
bool m_referenceWeakClassifier; |
|
int m_numWeakClassifier; |
|
int m_selectedClassifier; |
|
int m_idxOfNewWeakClassifier; |
|
std::vector<float> m_wCorrect; |
|
std::vector<float> m_wWrong; |
|
int m_iterationInit; |
|
|
|
}; |
|
|
|
class EstimatedGaussDistribution |
|
{ |
|
public: |
|
|
|
EstimatedGaussDistribution(); |
|
EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma ); |
|
virtual ~EstimatedGaussDistribution(); |
|
void update( float value ); //, float timeConstant = -1.0); |
|
float getMean(); |
|
float getSigma(); |
|
void setValues( float mean, float sigma ); |
|
|
|
private: |
|
|
|
float m_mean; |
|
float m_sigma; |
|
float m_P_mean; |
|
float m_P_sigma; |
|
float m_R_mean; |
|
float m_R_sigma; |
|
}; |
|
|
|
class WeakClassifierHaarFeature |
|
{ |
|
|
|
public: |
|
|
|
WeakClassifierHaarFeature(); |
|
virtual ~WeakClassifierHaarFeature(); |
|
|
|
bool update( float value, int target ); |
|
int eval( float value ); |
|
|
|
private: |
|
|
|
float sigma; |
|
float mean; |
|
ClassifierThreshold* m_classifier; |
|
|
|
void getInitialDistribution( EstimatedGaussDistribution *distribution ); |
|
void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples ); |
|
|
|
}; |
|
|
|
class Detector |
|
{ |
|
public: |
|
|
|
Detector( StrongClassifierDirectSelection* classifier ); |
|
virtual |
|
~Detector( void ); |
|
|
|
void |
|
classifySmooth( const std::vector<Mat>& image, float minMargin = 0 ); |
|
|
|
int |
|
getNumDetections(); |
|
float |
|
getConfidence( int patchIdx ); |
|
float |
|
getConfidenceOfDetection( int detectionIdx ); |
|
|
|
float getConfidenceOfBestDetection() |
|
{ |
|
return m_maxConfidence; |
|
} |
|
; |
|
int |
|
getPatchIdxOfBestDetection(); |
|
|
|
int |
|
getPatchIdxOfDetection( int detectionIdx ); |
|
|
|
const std::vector<int> & |
|
getIdxDetections() const |
|
{ |
|
return m_idxDetections; |
|
} |
|
; |
|
const std::vector<float> & |
|
getConfidences() const |
|
{ |
|
return m_confidences; |
|
} |
|
; |
|
|
|
const cv::Mat & |
|
getConfImageDisplay() const |
|
{ |
|
return m_confImageDisplay; |
|
} |
|
|
|
private: |
|
|
|
void |
|
prepareConfidencesMemory( int numPatches ); |
|
void |
|
prepareDetectionsMemory( int numDetections ); |
|
|
|
StrongClassifierDirectSelection* m_classifier; |
|
std::vector<float> m_confidences; |
|
int m_sizeConfidences; |
|
int m_numDetections; |
|
std::vector<int> m_idxDetections; |
|
int m_sizeDetections; |
|
int m_idxBestDetection; |
|
float m_maxConfidence; |
|
cv::Mat_<float> m_confMatrix; |
|
cv::Mat_<float> m_confMatrixSmooth; |
|
cv::Mat_<unsigned char> m_confImageDisplay; |
|
}; |
|
|
|
class ClassifierThreshold |
|
{ |
|
public: |
|
|
|
ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples ); |
|
virtual ~ClassifierThreshold(); |
|
|
|
void update( float value, int target ); |
|
int eval( float value ); |
|
|
|
void* getDistribution( int target ); |
|
|
|
private: |
|
|
|
EstimatedGaussDistribution* m_posSamples; |
|
EstimatedGaussDistribution* m_negSamples; |
|
|
|
float m_threshold; |
|
int m_parity; |
|
}; |
|
|
|
//! @} |
|
|
|
} /* namespace cv */ |
|
|
|
#endif
|
|
|