Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

211 lines
7.8 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "trackerCSRTScaleEstimation.hpp"
#include "trackerCSRTUtils.hpp"
//Discriminative Scale Space Tracking
namespace cv
{
class ParallelGetScaleFeatures : public ParallelLoopBody
{
public:
ParallelGetScaleFeatures(
Mat img,
Point2f pos,
Size2f base_target_sz,
float current_scale,
std::vector<float> &scale_factors,
Mat scale_window,
Size scale_model_sz,
int col_len,
Mat &result)
{
this->img = img;
this->pos = pos;
this->base_target_sz = base_target_sz;
this->current_scale = current_scale;
this->scale_factors = scale_factors;
this->scale_window = scale_window;
this->scale_model_sz = scale_model_sz;
this->col_len = col_len;
this->result = result;
}
virtual void operator ()(const Range& range) const CV_OVERRIDE
{
for (int s = range.start; s < range.end; s++) {
Size patch_sz = Size(static_cast<int>(current_scale * scale_factors[s] * base_target_sz.width),
static_cast<int>(current_scale * scale_factors[s] * base_target_sz.height));
Mat img_patch = get_subwindow(img, pos, patch_sz.width, patch_sz.height);
img_patch.convertTo(img_patch, CV_32FC3);
resize(img_patch, img_patch, Size(scale_model_sz.width, scale_model_sz.height),0,0,INTER_LINEAR);
std::vector<Mat> hog;
hog = get_features_hog(img_patch, 4);
for (int i = 0; i < static_cast<int>(hog.size()); ++i) {
hog[i] = hog[i].t();
hog[i] = scale_window.at<float>(0,s) * hog[i].reshape(0, col_len);
hog[i].copyTo(result(Rect(Point(s, i*col_len), hog[i].size())));
}
}
}
ParallelGetScaleFeatures& operator=(const ParallelGetScaleFeatures &) {
return *this;
}
private:
Mat img;
Point2f pos;
Size2f base_target_sz;
float current_scale;
std::vector<float> scale_factors;
Mat scale_window;
Size scale_model_sz;
int col_len;
Mat result;
};
DSST::DSST(const Mat &image,
Rect2f bounding_box,
Size2f template_size,
int numberOfScales,
float scaleStep,
float maxModelArea,
float sigmaFactor,
float scaleLearnRate):
scales_count(numberOfScales), scale_step(scaleStep), max_model_area(maxModelArea),
sigma_factor(sigmaFactor), learn_rate(scaleLearnRate)
{
original_targ_sz = bounding_box.size();
Point2f object_center = Point2f(bounding_box.x + original_targ_sz.width / 2,
bounding_box.y + original_targ_sz.height / 2);
current_scale_factor = 1.0;
if(scales_count % 2 == 0)
scales_count++;
scale_sigma = static_cast<float>(sqrt(scales_count) * sigma_factor);
min_scale_factor = pow(scale_step,
cvCeil(log(max(5.0 / template_size.width, 5.0 / template_size.height)) / log(scale_step)));
max_scale_factor = powf(scale_step,
static_cast<float>(cvFloor(log(min((float)image.rows / (float)bounding_box.width,
(float)image.cols / (float)bounding_box.height)) / log(scale_step))));
ys = Mat(1, scales_count, CV_32FC1);
float ss, sf;
for(int i = 0; i < ys.cols; ++i) {
ss = (float)(i+1) - cvCeil((float)scales_count / 2.0f);
ys.at<float>(0,i) = static_cast<float>(exp(-0.5 * pow(ss,2) / pow(scale_sigma,2)));
sf = static_cast<float>(i + 1);
scale_factors.push_back(pow(scale_step, cvCeil((float)scales_count / 2.0f) - sf));
}
scale_window = get_hann_win(Size(scales_count, 1));
float scale_model_factor = 1.0;
if(template_size.width * template_size.height * pow(scale_model_factor, 2) > max_model_area)
{
scale_model_factor = sqrt(max_model_area /
(template_size.width * template_size.height));
}
scale_model_sz = Size(cvFloor(template_size.width * scale_model_factor),
cvFloor(template_size.height * scale_model_factor));
Mat scale_resp = get_scale_features(image, object_center, original_targ_sz,
current_scale_factor, scale_factors, scale_window, scale_model_sz);
Mat ysf_row = Mat(ys.size(), CV_32FC2);
dft(ys, ysf_row, DFT_ROWS | DFT_COMPLEX_OUTPUT, 0);
ysf = repeat(ysf_row, scale_resp.rows, 1);
Mat Fscale_resp;
dft(scale_resp, Fscale_resp, DFT_ROWS | DFT_COMPLEX_OUTPUT);
mulSpectrums(ysf, Fscale_resp, sf_num, 0 , true);
Mat sf_den_all;
mulSpectrums(Fscale_resp, Fscale_resp, sf_den_all, 0, true);
reduce(sf_den_all, sf_den, 0, CV_REDUCE_SUM, -1);
}
DSST::~DSST()
{
}
Mat DSST::get_scale_features(
Mat img,
Point2f pos,
Size2f base_target_sz,
float current_scale,
std::vector<float> &scale_factors,
Mat scale_window,
Size scale_model_sz)
{
Mat result;
int col_len = 0;
Size patch_sz = Size(cvFloor(current_scale * scale_factors[0] * base_target_sz.width),
cvFloor(current_scale * scale_factors[0] * base_target_sz.height));
Mat img_patch = get_subwindow(img, pos, patch_sz.width, patch_sz.height);
img_patch.convertTo(img_patch, CV_32FC3);
resize(img_patch, img_patch, Size(scale_model_sz.width, scale_model_sz.height),0,0,INTER_LINEAR);
std::vector<Mat> hog;
hog = get_features_hog(img_patch, 4);
result = Mat(Size((int)scale_factors.size(), hog[0].cols * hog[0].rows * (int)hog.size()), CV_32F);
col_len = hog[0].cols * hog[0].rows;
for (int i = 0; i < static_cast<int>(hog.size()); ++i) {
hog[i] = hog[i].t();
hog[i] = scale_window.at<float>(0,0) * hog[i].reshape(0, col_len);
hog[i].copyTo(result(Rect(Point(0, i*col_len), hog[i].size())));
}
ParallelGetScaleFeatures parallelGetScaleFeatures(img, pos, base_target_sz,
current_scale, scale_factors, scale_window, scale_model_sz, col_len, result);
parallel_for_(Range(1, static_cast<int>(scale_factors.size())), parallelGetScaleFeatures);
return result;
}
void DSST::update(const Mat &image, const Point2f object_center)
{
Mat scale_features = get_scale_features(image, object_center, original_targ_sz,
current_scale_factor, scale_factors, scale_window, scale_model_sz);
Mat Fscale_features;
dft(scale_features, Fscale_features, DFT_ROWS | DFT_COMPLEX_OUTPUT);
Mat new_sf_num;
Mat new_sf_den;
Mat new_sf_den_all;
mulSpectrums(ysf, Fscale_features, new_sf_num, DFT_ROWS, true);
Mat sf_den_all;
mulSpectrums(Fscale_features, Fscale_features, new_sf_den_all, DFT_ROWS, true);
reduce(new_sf_den_all, new_sf_den, 0, CV_REDUCE_SUM, -1);
sf_num = (1 - learn_rate) * sf_num + learn_rate * new_sf_num;
sf_den = (1 - learn_rate) * sf_den + learn_rate * new_sf_den;
}
float DSST::getScale(const Mat &image, const Point2f object_center)
{
Mat scale_features = get_scale_features(image, object_center, original_targ_sz,
current_scale_factor, scale_factors, scale_window, scale_model_sz);
Mat Fscale_features;
dft(scale_features, Fscale_features, DFT_ROWS | DFT_COMPLEX_OUTPUT);
mulSpectrums(Fscale_features, sf_num, Fscale_features, 0, false);
Mat scale_resp;
reduce(Fscale_features, scale_resp, 0, CV_REDUCE_SUM, -1);
scale_resp = divide_complex_matrices(scale_resp, sf_den + 0.01f);
idft(scale_resp, scale_resp, DFT_REAL_OUTPUT|DFT_SCALE);
Point max_loc;
minMaxLoc(scale_resp, NULL, NULL, NULL, &max_loc);
current_scale_factor *= scale_factors[max_loc.x];
if(current_scale_factor < min_scale_factor)
current_scale_factor = min_scale_factor;
else if(current_scale_factor > max_scale_factor)
current_scale_factor = max_scale_factor;
return current_scale_factor;
}
} /* namespace cv */