Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

526 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/ximgproc/edge_filter.hpp"
#include "precomp.hpp"
/* Disable "from double to float" and "from size_t to int" warnings.
* Fixing these would make the code look ugly by introducing explicit cast all around.
* Here these warning are pointless anyway.
*/
#ifdef _MSC_VER
#pragma warning( disable : 4305 4244 4267 4838 )
#endif
#ifdef __clang__
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#endif
namespace cv
{
namespace optflow
{
namespace
{
#ifndef M_SQRT2
const float M_SQRT2 = 1.41421356237309504880;
#endif
template <typename T> inline int mathSign( T val ) { return ( T( 0 ) < val ) - ( val < T( 0 ) ); }
/* Stable symmetric Householder reflection that gives c and s such that
* [ c s ][a] = [d],
* [ s -c ][b] [0]
*
* Output:
* c -- cosine(theta), where theta is the implicit angle of rotation
* (counter-clockwise) in a plane-rotation
* s -- sine(theta)
* r -- two-norm of [a; b]
*/
inline void symOrtho( double a, double b, double &c, double &s, double &r )
{
if ( b == 0 )
{
c = mathSign( a );
s = 0;
r = std::abs( a );
}
else if ( a == 0 )
{
c = 0;
s = mathSign( b );
r = std::abs( b );
}
else if ( std::abs( b ) > std::abs( a ) )
{
const double tau = a / b;
s = mathSign( b ) / std::sqrt( 1 + tau * tau );
c = s * tau;
r = b / s;
}
else
{
const double tau = b / a;
c = mathSign( a ) / std::sqrt( 1 + tau * tau );
s = c * tau;
r = a / c;
}
}
/* Iterative LSQR algorithm for solving least squares problems.
*
* [1] Paige, C. C. and M. A. Saunders,
* LSQR: An Algorithm for Sparse Linear Equations And Sparse Least Squares
* ACM Trans. Math. Soft., Vol.8, 1982, pp. 43-71.
*
* Solves the following problem:
* argmin_x ||Ax - b|| + damp||x||
*
* Output:
* x -- approximate solution
*/
void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const double damp = 0.0, const unsigned iter_lim = 10 )
{
const int n = A.size().width;
CV_Assert( A.size().height == b.size().height );
CV_Assert( A.type() == CV_32F );
CV_Assert( b.type() == CV_32F );
xOut.create( n, 1, CV_32F );
Mat v( n, 1, CV_32F, 0.0f );
Mat u = b;
Mat x = xOut.getMat();
x = Mat::zeros( x.size(), x.type() );
double alfa = 0;
double beta = cv::norm( u, NORM_L2 );
Mat w( n, 1, CV_32F, 0.0f );
const Mat AT = A.t();
if ( beta > 0 )
{
u *= 1 / beta;
v = AT * u;
alfa = cv::norm( v, NORM_L2 );
}
if ( alfa > 0 )
{
v *= 1 / alfa;
w = v.clone();
}
double rhobar = alfa;
double phibar = beta;
if ( alfa * beta == 0 )
return;
for ( unsigned itn = 0; itn < iter_lim; ++itn )
{
u *= -alfa;
u += A * v;
beta = cv::norm( u, NORM_L2 );
if ( beta > 0 )
{
u *= 1 / beta;
v *= -beta;
v += AT * u;
alfa = cv::norm( v, NORM_L2 );
if ( alfa > 0 )
v *= 1 / alfa;
}
double rhobar1 = sqrt( rhobar * rhobar + damp * damp );
double cs1 = rhobar / rhobar1;
phibar = cs1 * phibar;
double cs, sn, rho;
symOrtho( rhobar1, beta, cs, sn, rho );
double theta = sn * alfa;
rhobar = -cs * alfa;
double phi = cs * phibar;
phibar = sn * phibar;
double t1 = phi / rho;
double t2 = -theta / rho;
x += t1 * w;
w *= t2;
w += v;
}
}
inline void _cpu_fillDCTSampledPoints( float *row, const Point2f &p, const Size &basisSize, const Size &size )
{
for ( int n1 = 0; n1 < basisSize.width; ++n1 )
for ( int n2 = 0; n2 < basisSize.height; ++n2 )
row[n1 * basisSize.height + n2] =
cosf( ( n1 * CV_PI / size.width ) * ( p.x + 0.5 ) ) * cosf( ( n2 * CV_PI / size.height ) * ( p.y + 0.5 ) );
}
ocl::ProgramSource _ocl_fillDCTSampledPointsSource(
"__kernel void fillDCTSampledPoints(__global const uchar* features, int fstep, int foff, __global "
"uchar* A, int Astep, int Aoff, int fs, int bsw, int bsh, int sw, int sh) {"
"const int i = get_global_id(0);"
"const int n1 = get_global_id(1);"
"const int n2 = get_global_id(2);"
"if (i >= fs || n1 >= bsw || n2 >= bsh) return;"
"__global const float2* f = (__global const float2*)(features + (fstep * i + foff));"
"__global float* a = (__global float*)(A + (Astep * i + Aoff + (n1 * bsh + n2) * sizeof(float)));"
"const float2 p = f[0];"
"const float pi = 3.14159265358979323846;"
"a[0] = cos((n1 * pi / sw) * (p.x + 0.5)) * cos((n2 * pi / sh) * (p.y + 0.5));"
"}" );
void applyCLAHE( UMat &img, float claheClip )
{
Ptr<CLAHE> clahe = createCLAHE();
clahe->setClipLimit( claheClip );
clahe->apply( img, img );
}
void reduceToFlow( const Mat &w1, const Mat &w2, Mat &flow, const Size &basisSize )
{
const Size size = flow.size();
Mat flowX( size, CV_32F, 0.0f );
Mat flowY( size, CV_32F, 0.0f );
const float mult = sqrt( static_cast<float>(size.area()) ) * 0.5;
for ( int i = 0; i < basisSize.width; ++i )
for ( int j = 0; j < basisSize.height; ++j )
{
flowX.at<float>( j, i ) = w1.at<float>( i * basisSize.height + j ) * mult;
flowY.at<float>( j, i ) = w2.at<float>( i * basisSize.height + j ) * mult;
}
for ( int i = 0; i < basisSize.height; ++i )
{
flowX.at<float>( i, 0 ) *= M_SQRT2;
flowY.at<float>( i, 0 ) *= M_SQRT2;
}
for ( int i = 0; i < basisSize.width; ++i )
{
flowX.at<float>( 0, i ) *= M_SQRT2;
flowY.at<float>( 0, i ) *= M_SQRT2;
}
dct( flowX, flowX, DCT_INVERSE );
dct( flowY, flowY, DCT_INVERSE );
for ( int i = 0; i < size.height; ++i )
for ( int j = 0; j < size.width; ++j )
flow.at<Point2f>( i, j ) = Point2f( flowX.at<float>( i, j ), flowY.at<float>( i, j ) );
}
}
void OpticalFlowPCAFlow::findSparseFeatures( UMat &from, UMat &to, std::vector<Point2f> &features,
std::vector<Point2f> &predictedFeatures ) const
{
Size size = from.size();
const unsigned maxFeatures = size.area() * sparseRate;
goodFeaturesToTrack( from, features, maxFeatures * retainedCornersFraction, 0.005, 3 );
// Add points along the grid if not enough features
if ( maxFeatures > features.size() )
{
const unsigned missingPoints = maxFeatures - features.size();
const unsigned blockSize = sqrt( (float)size.area() / missingPoints );
for ( int x = blockSize / 2; x < size.width; x += blockSize )
for ( int y = blockSize / 2; y < size.height; y += blockSize )
features.push_back( Point2f( x, y ) );
}
std::vector<uchar> predictedStatus;
std::vector<float> predictedError;
calcOpticalFlowPyrLK( from, to, features, predictedFeatures, predictedStatus, predictedError );
size_t j = 0;
for ( size_t i = 0; i < features.size(); ++i )
{
if ( predictedStatus[i] )
{
features[j] = features[i];
predictedFeatures[j] = predictedFeatures[i];
++j;
}
}
features.resize( j );
predictedFeatures.resize( j );
}
void OpticalFlowPCAFlow::removeOcclusions( UMat &from, UMat &to, std::vector<Point2f> &features,
std::vector<Point2f> &predictedFeatures ) const
{
std::vector<uchar> predictedStatus;
std::vector<float> predictedError;
std::vector<Point2f> backwardFeatures;
calcOpticalFlowPyrLK( to, from, predictedFeatures, backwardFeatures, predictedStatus, predictedError );
size_t j = 0;
const float threshold = occlusionsThreshold * sqrt( static_cast<float>(from.size().area()) );
for ( size_t i = 0; i < predictedFeatures.size(); ++i )
{
if ( predictedStatus[i] )
{
Point2f flowDiff = features[i] - backwardFeatures[i];
if ( flowDiff.dot( flowDiff ) <= threshold )
{
features[j] = features[i];
predictedFeatures[j] = predictedFeatures[i];
++j;
}
}
}
features.resize( j );
predictedFeatures.resize( j );
}
void OpticalFlowPCAFlow::getSystem( OutputArray AOut, OutputArray b1Out, OutputArray b2Out,
const std::vector<Point2f> &features, const std::vector<Point2f> &predictedFeatures,
const Size size )
{
AOut.create( features.size(), basisSize.area(), CV_32F );
b1Out.create( features.size(), 1, CV_32F );
b2Out.create( features.size(), 1, CV_32F );
if ( useOpenCL )
{
UMat A = AOut.getUMat();
Mat b1 = b1Out.getMat();
Mat b2 = b2Out.getMat();
ocl::Kernel kernel( "fillDCTSampledPoints", _ocl_fillDCTSampledPointsSource );
size_t globSize[] = {features.size(), basisSize.width, basisSize.height};
kernel
.args( cv::ocl::KernelArg::ReadOnlyNoSize( Mat( features ).getUMat( ACCESS_READ ) ),
cv::ocl::KernelArg::WriteOnlyNoSize( A ), (int)features.size(), (int)basisSize.width,
(int)basisSize.height, (int)size.width, (int)size.height )
.run( 3, globSize, 0, true );
for ( size_t i = 0; i < features.size(); ++i )
{
const Point2f flow = predictedFeatures[i] - features[i];
b1.at<float>( i ) = flow.x;
b2.at<float>( i ) = flow.y;
}
}
else
{
Mat A = AOut.getMat();
Mat b1 = b1Out.getMat();
Mat b2 = b2Out.getMat();
for ( size_t i = 0; i < features.size(); ++i )
{
_cpu_fillDCTSampledPoints( A.ptr<float>( i ), features[i], basisSize, size );
const Point2f flow = predictedFeatures[i] - features[i];
b1.at<float>( i ) = flow.x;
b2.at<float>( i ) = flow.y;
}
}
}
void OpticalFlowPCAFlow::getSystem( OutputArray A1Out, OutputArray A2Out, OutputArray b1Out, OutputArray b2Out,
const std::vector<Point2f> &features, const std::vector<Point2f> &predictedFeatures,
const Size size )
{
CV_Assert( prior->getBasisSize() == basisSize.area() );
A1Out.create( features.size() + prior->getPadding(), basisSize.area(), CV_32F );
A2Out.create( features.size() + prior->getPadding(), basisSize.area(), CV_32F );
b1Out.create( features.size() + prior->getPadding(), 1, CV_32F );
b2Out.create( features.size() + prior->getPadding(), 1, CV_32F );
if ( useOpenCL )
{
UMat A = A1Out.getUMat();
Mat b1 = b1Out.getMat();
Mat b2 = b2Out.getMat();
ocl::Kernel kernel( "fillDCTSampledPoints", _ocl_fillDCTSampledPointsSource );
size_t globSize[] = {features.size(), basisSize.width, basisSize.height};
kernel
.args( cv::ocl::KernelArg::ReadOnlyNoSize( Mat( features ).getUMat( ACCESS_READ ) ),
cv::ocl::KernelArg::WriteOnlyNoSize( A ), (int)features.size(), (int)basisSize.width,
(int)basisSize.height, (int)size.width, (int)size.height )
.run( 3, globSize, 0, true );
for ( size_t i = 0; i < features.size(); ++i )
{
const Point2f flow = predictedFeatures[i] - features[i];
b1.at<float>( i ) = flow.x;
b2.at<float>( i ) = flow.y;
}
}
else
{
Mat A1 = A1Out.getMat();
Mat b1 = b1Out.getMat();
Mat b2 = b2Out.getMat();
for ( size_t i = 0; i < features.size(); ++i )
{
_cpu_fillDCTSampledPoints( A1.ptr<float>( i ), features[i], basisSize, size );
const Point2f flow = predictedFeatures[i] - features[i];
b1.at<float>( i ) = flow.x;
b2.at<float>( i ) = flow.y;
}
}
Mat A1 = A1Out.getMat();
Mat A2 = A2Out.getMat();
Mat b1 = b1Out.getMat();
Mat b2 = b2Out.getMat();
memcpy( A2.ptr<float>(), A1.ptr<float>(), features.size() * basisSize.area() * sizeof( float ) );
prior->fillConstraints( A1.ptr<float>( features.size(), 0 ), A2.ptr<float>( features.size(), 0 ),
b1.ptr<float>( features.size(), 0 ), b2.ptr<float>( features.size(), 0 ) );
}
void OpticalFlowPCAFlow::calc( InputArray I0, InputArray I1, InputOutputArray flowOut )
{
const Size size = I0.size();
CV_Assert( size == I1.size() );
UMat from, to;
if ( I0.channels() == 3 )
{
cvtColor( I0, from, COLOR_BGR2GRAY );
from.convertTo( from, CV_8U );
}
else
{
I0.getMat().convertTo( from, CV_8U );
}
if ( I1.channels() == 3 )
{
cvtColor( I1, to, COLOR_BGR2GRAY );
to.convertTo( to, CV_8U );
}
else
{
I1.getMat().convertTo( to, CV_8U );
}
CV_Assert( from.channels() == 1 );
CV_Assert( to.channels() == 1 );
const Mat fromOrig = from.getMat( ACCESS_READ ).clone();
useOpenCL = flowOut.isUMat() && ocl::useOpenCL();
applyCLAHE( from, claheClip );
applyCLAHE( to, claheClip );
std::vector<Point2f> features, predictedFeatures;
findSparseFeatures( from, to, features, predictedFeatures );
removeOcclusions( from, to, features, predictedFeatures );
flowOut.create( size, CV_32FC2 );
Mat flow = flowOut.getMat();
Mat w1, w2;
if ( prior.get() )
{
Mat A1, A2, b1, b2;
getSystem( A1, A2, b1, b2, features, predictedFeatures, size );
solveLSQR( A1, b1, w1, dampingFactor * size.area() );
solveLSQR( A2, b2, w2, dampingFactor * size.area() );
}
else
{
Mat A, b1, b2;
getSystem( A, b1, b2, features, predictedFeatures, size );
solveLSQR( A, b1, w1, dampingFactor * size.area() );
solveLSQR( A, b2, w2, dampingFactor * size.area() );
}
Mat flowSmall( ( size / 8 ) * 2, CV_32FC2 );
reduceToFlow( w1, w2, flowSmall, basisSize );
resize( flowSmall, flow, size, 0, 0, INTER_LINEAR );
ximgproc::fastGlobalSmootherFilter( fromOrig, flow, flow, 500, 2 );
}
OpticalFlowPCAFlow::OpticalFlowPCAFlow( Ptr<const PCAPrior> _prior, const Size _basisSize, float _sparseRate,
float _retainedCornersFraction, float _occlusionsThreshold,
float _dampingFactor, float _claheClip )
: prior( _prior ), basisSize( _basisSize ), sparseRate( _sparseRate ),
retainedCornersFraction( _retainedCornersFraction ), occlusionsThreshold( _occlusionsThreshold ),
dampingFactor( _dampingFactor ), claheClip( _claheClip ), useOpenCL( false )
{
CV_Assert( sparseRate > 0 && sparseRate <= 0.1 );
CV_Assert( retainedCornersFraction >= 0 && retainedCornersFraction <= 1.0 );
CV_Assert( occlusionsThreshold > 0 );
}
void OpticalFlowPCAFlow::collectGarbage() {}
Ptr<DenseOpticalFlow> createOptFlow_PCAFlow() { return makePtr<OpticalFlowPCAFlow>(); }
PCAPrior::PCAPrior( const char *pathToPrior )
{
FILE *f = fopen( pathToPrior, "rb" );
CV_Assert( f );
unsigned n = 0, m = 0;
CV_Assert( fread( &n, sizeof( n ), 1, f ) == 1 );
CV_Assert( fread( &m, sizeof( m ), 1, f ) == 1 );
L1.create( n, m, CV_32F );
L2.create( n, m, CV_32F );
c1.create( n, 1, CV_32F );
c2.create( n, 1, CV_32F );
CV_Assert( fread( L1.ptr<float>(), n * m * sizeof( float ), 1, f ) == 1 );
CV_Assert( fread( L2.ptr<float>(), n * m * sizeof( float ), 1, f ) == 1 );
CV_Assert( fread( c1.ptr<float>(), n * sizeof( float ), 1, f ) == 1 );
CV_Assert( fread( c2.ptr<float>(), n * sizeof( float ), 1, f ) == 1 );
fclose( f );
}
void PCAPrior::fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const
{
memcpy( A1, L1.ptr<float>(), L1.size().area() * sizeof( float ) );
memcpy( A2, L2.ptr<float>(), L2.size().area() * sizeof( float ) );
memcpy( b1, c1.ptr<float>(), c1.size().area() * sizeof( float ) );
memcpy( b2, c2.ptr<float>(), c2.size().area() * sizeof( float ) );
}
}
}