You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1503 lines
68 KiB
1503 lines
68 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_optflow.hpp" |
|
|
|
using namespace std; |
|
#define EPS 0.001F |
|
#define INF 1E+10F |
|
|
|
namespace cv |
|
{ |
|
namespace optflow |
|
{ |
|
|
|
class DISOpticalFlowImpl CV_FINAL : public DISOpticalFlow |
|
{ |
|
public: |
|
DISOpticalFlowImpl(); |
|
|
|
void calc(InputArray I0, InputArray I1, InputOutputArray flow) CV_OVERRIDE; |
|
void collectGarbage() CV_OVERRIDE; |
|
|
|
protected: //!< algorithm parameters |
|
int finest_scale, coarsest_scale; |
|
int patch_size; |
|
int patch_stride; |
|
int grad_descent_iter; |
|
int variational_refinement_iter; |
|
float variational_refinement_alpha; |
|
float variational_refinement_gamma; |
|
float variational_refinement_delta; |
|
bool use_mean_normalization; |
|
bool use_spatial_propagation; |
|
|
|
protected: //!< some auxiliary variables |
|
int border_size; |
|
int w, h; //!< flow buffer width and height on the current scale |
|
int ws, hs; //!< sparse flow buffer width and height on the current scale |
|
|
|
public: |
|
int getFinestScale() const CV_OVERRIDE { return finest_scale; } |
|
void setFinestScale(int val) CV_OVERRIDE { finest_scale = val; } |
|
int getPatchSize() const CV_OVERRIDE { return patch_size; } |
|
void setPatchSize(int val) CV_OVERRIDE { patch_size = val; } |
|
int getPatchStride() const CV_OVERRIDE { return patch_stride; } |
|
void setPatchStride(int val) CV_OVERRIDE { patch_stride = val; } |
|
int getGradientDescentIterations() const CV_OVERRIDE { return grad_descent_iter; } |
|
void setGradientDescentIterations(int val) CV_OVERRIDE { grad_descent_iter = val; } |
|
int getVariationalRefinementIterations() const CV_OVERRIDE { return variational_refinement_iter; } |
|
void setVariationalRefinementIterations(int val) CV_OVERRIDE { variational_refinement_iter = val; } |
|
float getVariationalRefinementAlpha() const CV_OVERRIDE { return variational_refinement_alpha; } |
|
void setVariationalRefinementAlpha(float val) CV_OVERRIDE { variational_refinement_alpha = val; } |
|
float getVariationalRefinementDelta() const CV_OVERRIDE { return variational_refinement_delta; } |
|
void setVariationalRefinementDelta(float val) CV_OVERRIDE { variational_refinement_delta = val; } |
|
float getVariationalRefinementGamma() const CV_OVERRIDE { return variational_refinement_gamma; } |
|
void setVariationalRefinementGamma(float val) CV_OVERRIDE { variational_refinement_gamma = val; } |
|
|
|
bool getUseMeanNormalization() const CV_OVERRIDE { return use_mean_normalization; } |
|
void setUseMeanNormalization(bool val) CV_OVERRIDE { use_mean_normalization = val; } |
|
bool getUseSpatialPropagation() const CV_OVERRIDE { return use_spatial_propagation; } |
|
void setUseSpatialPropagation(bool val) CV_OVERRIDE { use_spatial_propagation = val; } |
|
|
|
protected: //!< internal buffers |
|
vector<Mat_<uchar> > I0s; //!< Gaussian pyramid for the current frame |
|
vector<Mat_<uchar> > I1s; //!< Gaussian pyramid for the next frame |
|
vector<Mat_<uchar> > I1s_ext; //!< I1s with borders |
|
|
|
vector<Mat_<short> > I0xs; //!< Gaussian pyramid for the x gradient of the current frame |
|
vector<Mat_<short> > I0ys; //!< Gaussian pyramid for the y gradient of the current frame |
|
|
|
vector<Mat_<float> > Ux; //!< x component of the flow vectors |
|
vector<Mat_<float> > Uy; //!< y component of the flow vectors |
|
|
|
vector<Mat_<float> > initial_Ux; //!< x component of the initial flow field, if one was passed as an input |
|
vector<Mat_<float> > initial_Uy; //!< y component of the initial flow field, if one was passed as an input |
|
|
|
Mat_<Vec2f> U; //!< a buffer for the merged flow |
|
|
|
Mat_<float> Sx; //!< intermediate sparse flow representation (x component) |
|
Mat_<float> Sy; //!< intermediate sparse flow representation (y component) |
|
|
|
/* Structure tensor components: */ |
|
Mat_<float> I0xx_buf; //!< sum of squares of x gradient values |
|
Mat_<float> I0yy_buf; //!< sum of squares of y gradient values |
|
Mat_<float> I0xy_buf; //!< sum of x and y gradient products |
|
|
|
/* Extra buffers that are useful if patch mean-normalization is used: */ |
|
Mat_<float> I0x_buf; //!< sum of x gradient values |
|
Mat_<float> I0y_buf; //!< sum of y gradient values |
|
|
|
/* Auxiliary buffers used in structure tensor computation: */ |
|
Mat_<float> I0xx_buf_aux; |
|
Mat_<float> I0yy_buf_aux; |
|
Mat_<float> I0xy_buf_aux; |
|
Mat_<float> I0x_buf_aux; |
|
Mat_<float> I0y_buf_aux; |
|
|
|
vector<Ptr<VariationalRefinement> > variational_refinement_processors; |
|
|
|
private: //!< private methods and parallel sections |
|
void prepareBuffers(Mat &I0, Mat &I1, Mat &flow, bool use_flow); |
|
void precomputeStructureTensor(Mat &dst_I0xx, Mat &dst_I0yy, Mat &dst_I0xy, Mat &dst_I0x, Mat &dst_I0y, Mat &I0x, |
|
Mat &I0y); |
|
|
|
struct PatchInverseSearch_ParBody : public ParallelLoopBody |
|
{ |
|
DISOpticalFlowImpl *dis; |
|
int nstripes, stripe_sz; |
|
int hs; |
|
Mat *Sx, *Sy, *Ux, *Uy, *I0, *I1, *I0x, *I0y; |
|
int num_iter, pyr_level; |
|
|
|
PatchInverseSearch_ParBody(DISOpticalFlowImpl &_dis, int _nstripes, int _hs, Mat &dst_Sx, Mat &dst_Sy, |
|
Mat &src_Ux, Mat &src_Uy, Mat &_I0, Mat &_I1, Mat &_I0x, Mat &_I0y, int _num_iter, |
|
int _pyr_level); |
|
void operator()(const Range &range) const CV_OVERRIDE; |
|
}; |
|
|
|
struct Densification_ParBody : public ParallelLoopBody |
|
{ |
|
DISOpticalFlowImpl *dis; |
|
int nstripes, stripe_sz; |
|
int h; |
|
Mat *Ux, *Uy, *Sx, *Sy, *I0, *I1; |
|
|
|
Densification_ParBody(DISOpticalFlowImpl &_dis, int _nstripes, int _h, Mat &dst_Ux, Mat &dst_Uy, Mat &src_Sx, |
|
Mat &src_Sy, Mat &_I0, Mat &_I1); |
|
void operator()(const Range &range) const CV_OVERRIDE; |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
vector<UMat> u_I0s; //!< Gaussian pyramid for the current frame |
|
vector<UMat> u_I1s; //!< Gaussian pyramid for the next frame |
|
vector<UMat> u_I1s_ext; //!< I1s with borders |
|
|
|
vector<UMat> u_I0xs; //!< Gaussian pyramid for the x gradient of the current frame |
|
vector<UMat> u_I0ys; //!< Gaussian pyramid for the y gradient of the current frame |
|
|
|
vector<UMat> u_Ux; //!< x component of the flow vectors |
|
vector<UMat> u_Uy; //!< y component of the flow vectors |
|
|
|
vector<UMat> u_initial_Ux; //!< x component of the initial flow field, if one was passed as an input |
|
vector<UMat> u_initial_Uy; //!< y component of the initial flow field, if one was passed as an input |
|
|
|
UMat u_U; //!< a buffer for the merged flow |
|
|
|
UMat u_Sx; //!< intermediate sparse flow representation (x component) |
|
UMat u_Sy; //!< intermediate sparse flow representation (y component) |
|
|
|
/* Structure tensor components: */ |
|
UMat u_I0xx_buf; //!< sum of squares of x gradient values |
|
UMat u_I0yy_buf; //!< sum of squares of y gradient values |
|
UMat u_I0xy_buf; //!< sum of x and y gradient products |
|
|
|
/* Extra buffers that are useful if patch mean-normalization is used: */ |
|
UMat u_I0x_buf; //!< sum of x gradient values |
|
UMat u_I0y_buf; //!< sum of y gradient values |
|
|
|
/* Auxiliary buffers used in structure tensor computation: */ |
|
UMat u_I0xx_buf_aux; |
|
UMat u_I0yy_buf_aux; |
|
UMat u_I0xy_buf_aux; |
|
UMat u_I0x_buf_aux; |
|
UMat u_I0y_buf_aux; |
|
|
|
bool ocl_precomputeStructureTensor(UMat &dst_I0xx, UMat &dst_I0yy, UMat &dst_I0xy, |
|
UMat &dst_I0x, UMat &dst_I0y, UMat &I0x, UMat &I0y); |
|
void ocl_prepareBuffers(UMat &I0, UMat &I1, UMat &flow, bool use_flow); |
|
bool ocl_calc(InputArray I0, InputArray I1, InputOutputArray flow); |
|
bool ocl_Densification(UMat &dst_Ux, UMat &dst_Uy, UMat &src_Sx, UMat &src_Sy, UMat &_I0, UMat &_I1); |
|
bool ocl_PatchInverseSearch(UMat &src_Ux, UMat &src_Uy, |
|
UMat &I0, UMat &I1, UMat &I0x, UMat &I0y, int num_iter, int pyr_level); |
|
#endif |
|
}; |
|
|
|
DISOpticalFlowImpl::DISOpticalFlowImpl() |
|
{ |
|
finest_scale = 2; |
|
patch_size = 8; |
|
patch_stride = 4; |
|
grad_descent_iter = 16; |
|
variational_refinement_iter = 5; |
|
variational_refinement_alpha = 20.f; |
|
variational_refinement_gamma = 10.f; |
|
variational_refinement_delta = 5.f; |
|
|
|
border_size = 16; |
|
use_mean_normalization = true; |
|
use_spatial_propagation = true; |
|
|
|
/* Use separate variational refinement instances for different scales to avoid repeated memory allocation: */ |
|
int max_possible_scales = 10; |
|
for (int i = 0; i < max_possible_scales; i++) |
|
variational_refinement_processors.push_back(createVariationalFlowRefinement()); |
|
} |
|
|
|
void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1, Mat &flow, bool use_flow) |
|
{ |
|
I0s.resize(coarsest_scale + 1); |
|
I1s.resize(coarsest_scale + 1); |
|
I1s_ext.resize(coarsest_scale + 1); |
|
I0xs.resize(coarsest_scale + 1); |
|
I0ys.resize(coarsest_scale + 1); |
|
Ux.resize(coarsest_scale + 1); |
|
Uy.resize(coarsest_scale + 1); |
|
|
|
Mat flow_uv[2]; |
|
if (use_flow) |
|
{ |
|
split(flow, flow_uv); |
|
initial_Ux.resize(coarsest_scale + 1); |
|
initial_Uy.resize(coarsest_scale + 1); |
|
} |
|
|
|
int fraction = 1; |
|
int cur_rows = 0, cur_cols = 0; |
|
|
|
for (int i = 0; i <= coarsest_scale; i++) |
|
{ |
|
/* Avoid initializing the pyramid levels above the finest scale, as they won't be used anyway */ |
|
if (i == finest_scale) |
|
{ |
|
cur_rows = I0.rows / fraction; |
|
cur_cols = I0.cols / fraction; |
|
I0s[i].create(cur_rows, cur_cols); |
|
resize(I0, I0s[i], I0s[i].size(), 0.0, 0.0, INTER_AREA); |
|
I1s[i].create(cur_rows, cur_cols); |
|
resize(I1, I1s[i], I1s[i].size(), 0.0, 0.0, INTER_AREA); |
|
|
|
/* These buffers are reused in each scale so we initialize them once on the finest scale: */ |
|
Sx.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
Sy.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
I0xx_buf.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
I0yy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
I0xy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
I0x_buf.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
I0y_buf.create(cur_rows / patch_stride, cur_cols / patch_stride); |
|
|
|
I0xx_buf_aux.create(cur_rows, cur_cols / patch_stride); |
|
I0yy_buf_aux.create(cur_rows, cur_cols / patch_stride); |
|
I0xy_buf_aux.create(cur_rows, cur_cols / patch_stride); |
|
I0x_buf_aux.create(cur_rows, cur_cols / patch_stride); |
|
I0y_buf_aux.create(cur_rows, cur_cols / patch_stride); |
|
|
|
U.create(cur_rows, cur_cols); |
|
} |
|
else if (i > finest_scale) |
|
{ |
|
cur_rows = I0s[i - 1].rows / 2; |
|
cur_cols = I0s[i - 1].cols / 2; |
|
I0s[i].create(cur_rows, cur_cols); |
|
resize(I0s[i - 1], I0s[i], I0s[i].size(), 0.0, 0.0, INTER_AREA); |
|
I1s[i].create(cur_rows, cur_cols); |
|
resize(I1s[i - 1], I1s[i], I1s[i].size(), 0.0, 0.0, INTER_AREA); |
|
} |
|
|
|
if (i >= finest_scale) |
|
{ |
|
I1s_ext[i].create(cur_rows + 2 * border_size, cur_cols + 2 * border_size); |
|
copyMakeBorder(I1s[i], I1s_ext[i], border_size, border_size, border_size, border_size, BORDER_REPLICATE); |
|
I0xs[i].create(cur_rows, cur_cols); |
|
I0ys[i].create(cur_rows, cur_cols); |
|
spatialGradient(I0s[i], I0xs[i], I0ys[i]); |
|
Ux[i].create(cur_rows, cur_cols); |
|
Uy[i].create(cur_rows, cur_cols); |
|
variational_refinement_processors[i]->setAlpha(variational_refinement_alpha); |
|
variational_refinement_processors[i]->setDelta(variational_refinement_delta); |
|
variational_refinement_processors[i]->setGamma(variational_refinement_gamma); |
|
variational_refinement_processors[i]->setSorIterations(5); |
|
variational_refinement_processors[i]->setFixedPointIterations(variational_refinement_iter); |
|
|
|
if (use_flow) |
|
{ |
|
resize(flow_uv[0], initial_Ux[i], Size(cur_cols, cur_rows)); |
|
initial_Ux[i] /= fraction; |
|
resize(flow_uv[1], initial_Uy[i], Size(cur_cols, cur_rows)); |
|
initial_Uy[i] /= fraction; |
|
} |
|
} |
|
|
|
fraction *= 2; |
|
} |
|
} |
|
|
|
/* This function computes the structure tensor elements (local sums of I0x^2, I0x*I0y and I0y^2). |
|
* A simple box filter is not used instead because we need to compute these sums on a sparse grid |
|
* and store them densely in the output buffers. |
|
*/ |
|
void DISOpticalFlowImpl::precomputeStructureTensor(Mat &dst_I0xx, Mat &dst_I0yy, Mat &dst_I0xy, Mat &dst_I0x, |
|
Mat &dst_I0y, Mat &I0x, Mat &I0y) |
|
{ |
|
float *I0xx_ptr = dst_I0xx.ptr<float>(); |
|
float *I0yy_ptr = dst_I0yy.ptr<float>(); |
|
float *I0xy_ptr = dst_I0xy.ptr<float>(); |
|
float *I0x_ptr = dst_I0x.ptr<float>(); |
|
float *I0y_ptr = dst_I0y.ptr<float>(); |
|
|
|
float *I0xx_aux_ptr = I0xx_buf_aux.ptr<float>(); |
|
float *I0yy_aux_ptr = I0yy_buf_aux.ptr<float>(); |
|
float *I0xy_aux_ptr = I0xy_buf_aux.ptr<float>(); |
|
float *I0x_aux_ptr = I0x_buf_aux.ptr<float>(); |
|
float *I0y_aux_ptr = I0y_buf_aux.ptr<float>(); |
|
|
|
/* Separable box filter: horizontal pass */ |
|
for (int i = 0; i < h; i++) |
|
{ |
|
float sum_xx = 0.0f, sum_yy = 0.0f, sum_xy = 0.0f, sum_x = 0.0f, sum_y = 0.0f; |
|
short *x_row = I0x.ptr<short>(i); |
|
short *y_row = I0y.ptr<short>(i); |
|
for (int j = 0; j < patch_size; j++) |
|
{ |
|
sum_xx += x_row[j] * x_row[j]; |
|
sum_yy += y_row[j] * y_row[j]; |
|
sum_xy += x_row[j] * y_row[j]; |
|
sum_x += x_row[j]; |
|
sum_y += y_row[j]; |
|
} |
|
I0xx_aux_ptr[i * ws] = sum_xx; |
|
I0yy_aux_ptr[i * ws] = sum_yy; |
|
I0xy_aux_ptr[i * ws] = sum_xy; |
|
I0x_aux_ptr[i * ws] = sum_x; |
|
I0y_aux_ptr[i * ws] = sum_y; |
|
int js = 1; |
|
for (int j = patch_size; j < w; j++) |
|
{ |
|
sum_xx += (x_row[j] * x_row[j] - x_row[j - patch_size] * x_row[j - patch_size]); |
|
sum_yy += (y_row[j] * y_row[j] - y_row[j - patch_size] * y_row[j - patch_size]); |
|
sum_xy += (x_row[j] * y_row[j] - x_row[j - patch_size] * y_row[j - patch_size]); |
|
sum_x += (x_row[j] - x_row[j - patch_size]); |
|
sum_y += (y_row[j] - y_row[j - patch_size]); |
|
if ((j - patch_size + 1) % patch_stride == 0) |
|
{ |
|
I0xx_aux_ptr[i * ws + js] = sum_xx; |
|
I0yy_aux_ptr[i * ws + js] = sum_yy; |
|
I0xy_aux_ptr[i * ws + js] = sum_xy; |
|
I0x_aux_ptr[i * ws + js] = sum_x; |
|
I0y_aux_ptr[i * ws + js] = sum_y; |
|
js++; |
|
} |
|
} |
|
} |
|
|
|
AutoBuffer<float> sum_xx(ws), sum_yy(ws), sum_xy(ws), sum_x(ws), sum_y(ws); |
|
for (int j = 0; j < ws; j++) |
|
{ |
|
sum_xx[j] = 0.0f; |
|
sum_yy[j] = 0.0f; |
|
sum_xy[j] = 0.0f; |
|
sum_x[j] = 0.0f; |
|
sum_y[j] = 0.0f; |
|
} |
|
|
|
/* Separable box filter: vertical pass */ |
|
for (int i = 0; i < patch_size; i++) |
|
for (int j = 0; j < ws; j++) |
|
{ |
|
sum_xx[j] += I0xx_aux_ptr[i * ws + j]; |
|
sum_yy[j] += I0yy_aux_ptr[i * ws + j]; |
|
sum_xy[j] += I0xy_aux_ptr[i * ws + j]; |
|
sum_x[j] += I0x_aux_ptr[i * ws + j]; |
|
sum_y[j] += I0y_aux_ptr[i * ws + j]; |
|
} |
|
for (int j = 0; j < ws; j++) |
|
{ |
|
I0xx_ptr[j] = sum_xx[j]; |
|
I0yy_ptr[j] = sum_yy[j]; |
|
I0xy_ptr[j] = sum_xy[j]; |
|
I0x_ptr[j] = sum_x[j]; |
|
I0y_ptr[j] = sum_y[j]; |
|
} |
|
int is = 1; |
|
for (int i = patch_size; i < h; i++) |
|
{ |
|
for (int j = 0; j < ws; j++) |
|
{ |
|
sum_xx[j] += (I0xx_aux_ptr[i * ws + j] - I0xx_aux_ptr[(i - patch_size) * ws + j]); |
|
sum_yy[j] += (I0yy_aux_ptr[i * ws + j] - I0yy_aux_ptr[(i - patch_size) * ws + j]); |
|
sum_xy[j] += (I0xy_aux_ptr[i * ws + j] - I0xy_aux_ptr[(i - patch_size) * ws + j]); |
|
sum_x[j] += (I0x_aux_ptr[i * ws + j] - I0x_aux_ptr[(i - patch_size) * ws + j]); |
|
sum_y[j] += (I0y_aux_ptr[i * ws + j] - I0y_aux_ptr[(i - patch_size) * ws + j]); |
|
} |
|
if ((i - patch_size + 1) % patch_stride == 0) |
|
{ |
|
for (int j = 0; j < ws; j++) |
|
{ |
|
I0xx_ptr[is * ws + j] = sum_xx[j]; |
|
I0yy_ptr[is * ws + j] = sum_yy[j]; |
|
I0xy_ptr[is * ws + j] = sum_xy[j]; |
|
I0x_ptr[is * ws + j] = sum_x[j]; |
|
I0y_ptr[is * ws + j] = sum_y[j]; |
|
} |
|
is++; |
|
} |
|
} |
|
} |
|
|
|
DISOpticalFlowImpl::PatchInverseSearch_ParBody::PatchInverseSearch_ParBody(DISOpticalFlowImpl &_dis, int _nstripes, |
|
int _hs, Mat &dst_Sx, Mat &dst_Sy, |
|
Mat &src_Ux, Mat &src_Uy, Mat &_I0, Mat &_I1, |
|
Mat &_I0x, Mat &_I0y, int _num_iter, |
|
int _pyr_level) |
|
: dis(&_dis), nstripes(_nstripes), hs(_hs), Sx(&dst_Sx), Sy(&dst_Sy), Ux(&src_Ux), Uy(&src_Uy), I0(&_I0), I1(&_I1), |
|
I0x(&_I0x), I0y(&_I0y), num_iter(_num_iter), pyr_level(_pyr_level) |
|
{ |
|
stripe_sz = (int)ceil(hs / (double)nstripes); |
|
} |
|
|
|
/////////////////////////////////////////////* Patch processing functions *///////////////////////////////////////////// |
|
|
|
/* Some auxiliary macros */ |
|
#define HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION \ |
|
v_float32x4 w00v = v_setall_f32(w00); \ |
|
v_float32x4 w01v = v_setall_f32(w01); \ |
|
v_float32x4 w10v = v_setall_f32(w10); \ |
|
v_float32x4 w11v = v_setall_f32(w11); \ |
|
\ |
|
v_uint8x16 I0_row_16, I1_row_16, I1_row_shifted_16, I1_row_next_16, I1_row_next_shifted_16; \ |
|
v_uint16x8 I0_row_8, I1_row_8, I1_row_shifted_8, I1_row_next_8, I1_row_next_shifted_8, tmp; \ |
|
v_uint32x4 I0_row_4_left, I1_row_4_left, I1_row_shifted_4_left, I1_row_next_4_left, I1_row_next_shifted_4_left; \ |
|
v_uint32x4 I0_row_4_right, I1_row_4_right, I1_row_shifted_4_right, I1_row_next_4_right, \ |
|
I1_row_next_shifted_4_right; \ |
|
v_float32x4 I_diff_left, I_diff_right; \ |
|
\ |
|
/* Preload and expand the first row of I1: */ \ |
|
I1_row_16 = v_load(I1_ptr); \ |
|
I1_row_shifted_16 = v_extract<1>(I1_row_16, I1_row_16); \ |
|
v_expand(I1_row_16, I1_row_8, tmp); \ |
|
v_expand(I1_row_shifted_16, I1_row_shifted_8, tmp); \ |
|
v_expand(I1_row_8, I1_row_4_left, I1_row_4_right); \ |
|
v_expand(I1_row_shifted_8, I1_row_shifted_4_left, I1_row_shifted_4_right); \ |
|
I1_ptr += I1_stride; |
|
|
|
#define HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION \ |
|
/* Load the next row of I1: */ \ |
|
I1_row_next_16 = v_load(I1_ptr); \ |
|
/* Circular shift left by 1 element: */ \ |
|
I1_row_next_shifted_16 = v_extract<1>(I1_row_next_16, I1_row_next_16); \ |
|
/* Expand to 8 ushorts (we only need the first 8 values): */ \ |
|
v_expand(I1_row_next_16, I1_row_next_8, tmp); \ |
|
v_expand(I1_row_next_shifted_16, I1_row_next_shifted_8, tmp); \ |
|
/* Separate the left and right halves: */ \ |
|
v_expand(I1_row_next_8, I1_row_next_4_left, I1_row_next_4_right); \ |
|
v_expand(I1_row_next_shifted_8, I1_row_next_shifted_4_left, I1_row_next_shifted_4_right); \ |
|
\ |
|
/* Load current row of I0: */ \ |
|
I0_row_16 = v_load(I0_ptr); \ |
|
v_expand(I0_row_16, I0_row_8, tmp); \ |
|
v_expand(I0_row_8, I0_row_4_left, I0_row_4_right); \ |
|
\ |
|
/* Compute diffs between I0 and bilinearly interpolated I1: */ \ |
|
I_diff_left = w00v * v_cvt_f32(v_reinterpret_as_s32(I1_row_4_left)) + \ |
|
w01v * v_cvt_f32(v_reinterpret_as_s32(I1_row_shifted_4_left)) + \ |
|
w10v * v_cvt_f32(v_reinterpret_as_s32(I1_row_next_4_left)) + \ |
|
w11v * v_cvt_f32(v_reinterpret_as_s32(I1_row_next_shifted_4_left)) - \ |
|
v_cvt_f32(v_reinterpret_as_s32(I0_row_4_left)); \ |
|
I_diff_right = w00v * v_cvt_f32(v_reinterpret_as_s32(I1_row_4_right)) + \ |
|
w01v * v_cvt_f32(v_reinterpret_as_s32(I1_row_shifted_4_right)) + \ |
|
w10v * v_cvt_f32(v_reinterpret_as_s32(I1_row_next_4_right)) + \ |
|
w11v * v_cvt_f32(v_reinterpret_as_s32(I1_row_next_shifted_4_right)) - \ |
|
v_cvt_f32(v_reinterpret_as_s32(I0_row_4_right)); |
|
|
|
#define HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW \ |
|
I0_ptr += I0_stride; \ |
|
I1_ptr += I1_stride; \ |
|
\ |
|
I1_row_4_left = I1_row_next_4_left; \ |
|
I1_row_4_right = I1_row_next_4_right; \ |
|
I1_row_shifted_4_left = I1_row_next_shifted_4_left; \ |
|
I1_row_shifted_4_right = I1_row_next_shifted_4_right; |
|
|
|
/* This function essentially performs one iteration of gradient descent when finding the most similar patch in I1 for a |
|
* given one in I0. It assumes that I0_ptr and I1_ptr already point to the corresponding patches and w00, w01, w10, w11 |
|
* are precomputed bilinear interpolation weights. It returns the SSD (sum of squared differences) between these patches |
|
* and computes the values (dst_dUx, dst_dUy) that are used in the flow vector update. HAL acceleration is implemented |
|
* only for the default patch size (8x8). Everything is processed in floats as using fixed-point approximations harms |
|
* the quality significantly. |
|
*/ |
|
inline float processPatch(float &dst_dUx, float &dst_dUy, uchar *I0_ptr, uchar *I1_ptr, short *I0x_ptr, short *I0y_ptr, |
|
int I0_stride, int I1_stride, float w00, float w01, float w10, float w11, int patch_sz) |
|
{ |
|
float SSD = 0.0f; |
|
#ifdef CV_SIMD128 |
|
if (patch_sz == 8) |
|
{ |
|
/* Variables to accumulate the sums */ |
|
v_float32x4 Ux_vec = v_setall_f32(0); |
|
v_float32x4 Uy_vec = v_setall_f32(0); |
|
v_float32x4 SSD_vec = v_setall_f32(0); |
|
|
|
v_int16x8 I0x_row, I0y_row; |
|
v_int32x4 I0x_row_4_left, I0x_row_4_right, I0y_row_4_left, I0y_row_4_right; |
|
|
|
HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION; |
|
for (int row = 0; row < 8; row++) |
|
{ |
|
HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION; |
|
I0x_row = v_load(I0x_ptr); |
|
v_expand(I0x_row, I0x_row_4_left, I0x_row_4_right); |
|
I0y_row = v_load(I0y_ptr); |
|
v_expand(I0y_row, I0y_row_4_left, I0y_row_4_right); |
|
|
|
/* Update the sums: */ |
|
Ux_vec += I_diff_left * v_cvt_f32(I0x_row_4_left) + I_diff_right * v_cvt_f32(I0x_row_4_right); |
|
Uy_vec += I_diff_left * v_cvt_f32(I0y_row_4_left) + I_diff_right * v_cvt_f32(I0y_row_4_right); |
|
SSD_vec += I_diff_left * I_diff_left + I_diff_right * I_diff_right; |
|
|
|
I0x_ptr += I0_stride; |
|
I0y_ptr += I0_stride; |
|
HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW; |
|
} |
|
|
|
/* Final reduce operations: */ |
|
dst_dUx = v_reduce_sum(Ux_vec); |
|
dst_dUy = v_reduce_sum(Uy_vec); |
|
SSD = v_reduce_sum(SSD_vec); |
|
} |
|
else |
|
{ |
|
#endif |
|
dst_dUx = 0.0f; |
|
dst_dUy = 0.0f; |
|
float diff; |
|
for (int i = 0; i < patch_sz; i++) |
|
for (int j = 0; j < patch_sz; j++) |
|
{ |
|
diff = w00 * I1_ptr[i * I1_stride + j] + w01 * I1_ptr[i * I1_stride + j + 1] + |
|
w10 * I1_ptr[(i + 1) * I1_stride + j] + w11 * I1_ptr[(i + 1) * I1_stride + j + 1] - |
|
I0_ptr[i * I0_stride + j]; |
|
|
|
SSD += diff * diff; |
|
dst_dUx += diff * I0x_ptr[i * I0_stride + j]; |
|
dst_dUy += diff * I0y_ptr[i * I0_stride + j]; |
|
} |
|
#ifdef CV_SIMD128 |
|
} |
|
#endif |
|
return SSD; |
|
} |
|
|
|
/* Same as processPatch, but with patch mean normalization, which improves robustness under changing |
|
* lighting conditions |
|
*/ |
|
inline float processPatchMeanNorm(float &dst_dUx, float &dst_dUy, uchar *I0_ptr, uchar *I1_ptr, short *I0x_ptr, |
|
short *I0y_ptr, int I0_stride, int I1_stride, float w00, float w01, float w10, |
|
float w11, int patch_sz, float x_grad_sum, float y_grad_sum) |
|
{ |
|
float sum_diff = 0.0, sum_diff_sq = 0.0; |
|
float sum_I0x_mul = 0.0, sum_I0y_mul = 0.0; |
|
float n = (float)patch_sz * patch_sz; |
|
|
|
#ifdef CV_SIMD128 |
|
if (patch_sz == 8) |
|
{ |
|
/* Variables to accumulate the sums */ |
|
v_float32x4 sum_I0x_mul_vec = v_setall_f32(0); |
|
v_float32x4 sum_I0y_mul_vec = v_setall_f32(0); |
|
v_float32x4 sum_diff_vec = v_setall_f32(0); |
|
v_float32x4 sum_diff_sq_vec = v_setall_f32(0); |
|
|
|
v_int16x8 I0x_row, I0y_row; |
|
v_int32x4 I0x_row_4_left, I0x_row_4_right, I0y_row_4_left, I0y_row_4_right; |
|
|
|
HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION; |
|
for (int row = 0; row < 8; row++) |
|
{ |
|
HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION; |
|
I0x_row = v_load(I0x_ptr); |
|
v_expand(I0x_row, I0x_row_4_left, I0x_row_4_right); |
|
I0y_row = v_load(I0y_ptr); |
|
v_expand(I0y_row, I0y_row_4_left, I0y_row_4_right); |
|
|
|
/* Update the sums: */ |
|
sum_I0x_mul_vec += I_diff_left * v_cvt_f32(I0x_row_4_left) + I_diff_right * v_cvt_f32(I0x_row_4_right); |
|
sum_I0y_mul_vec += I_diff_left * v_cvt_f32(I0y_row_4_left) + I_diff_right * v_cvt_f32(I0y_row_4_right); |
|
sum_diff_sq_vec += I_diff_left * I_diff_left + I_diff_right * I_diff_right; |
|
sum_diff_vec += I_diff_left + I_diff_right; |
|
|
|
I0x_ptr += I0_stride; |
|
I0y_ptr += I0_stride; |
|
HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW; |
|
} |
|
|
|
/* Final reduce operations: */ |
|
sum_I0x_mul = v_reduce_sum(sum_I0x_mul_vec); |
|
sum_I0y_mul = v_reduce_sum(sum_I0y_mul_vec); |
|
sum_diff = v_reduce_sum(sum_diff_vec); |
|
sum_diff_sq = v_reduce_sum(sum_diff_sq_vec); |
|
} |
|
else |
|
{ |
|
#endif |
|
float diff; |
|
for (int i = 0; i < patch_sz; i++) |
|
for (int j = 0; j < patch_sz; j++) |
|
{ |
|
diff = w00 * I1_ptr[i * I1_stride + j] + w01 * I1_ptr[i * I1_stride + j + 1] + |
|
w10 * I1_ptr[(i + 1) * I1_stride + j] + w11 * I1_ptr[(i + 1) * I1_stride + j + 1] - |
|
I0_ptr[i * I0_stride + j]; |
|
|
|
sum_diff += diff; |
|
sum_diff_sq += diff * diff; |
|
|
|
sum_I0x_mul += diff * I0x_ptr[i * I0_stride + j]; |
|
sum_I0y_mul += diff * I0y_ptr[i * I0_stride + j]; |
|
} |
|
#ifdef CV_SIMD128 |
|
} |
|
#endif |
|
dst_dUx = sum_I0x_mul - sum_diff * x_grad_sum / n; |
|
dst_dUy = sum_I0y_mul - sum_diff * y_grad_sum / n; |
|
return sum_diff_sq - sum_diff * sum_diff / n; |
|
} |
|
|
|
/* Similar to processPatch, but compute only the sum of squared differences (SSD) between the patches */ |
|
inline float computeSSD(uchar *I0_ptr, uchar *I1_ptr, int I0_stride, int I1_stride, float w00, float w01, float w10, |
|
float w11, int patch_sz) |
|
{ |
|
float SSD = 0.0f; |
|
#ifdef CV_SIMD128 |
|
if (patch_sz == 8) |
|
{ |
|
v_float32x4 SSD_vec = v_setall_f32(0); |
|
HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION; |
|
for (int row = 0; row < 8; row++) |
|
{ |
|
HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION; |
|
SSD_vec += I_diff_left * I_diff_left + I_diff_right * I_diff_right; |
|
HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW; |
|
} |
|
SSD = v_reduce_sum(SSD_vec); |
|
} |
|
else |
|
{ |
|
#endif |
|
float diff; |
|
for (int i = 0; i < patch_sz; i++) |
|
for (int j = 0; j < patch_sz; j++) |
|
{ |
|
diff = w00 * I1_ptr[i * I1_stride + j] + w01 * I1_ptr[i * I1_stride + j + 1] + |
|
w10 * I1_ptr[(i + 1) * I1_stride + j] + w11 * I1_ptr[(i + 1) * I1_stride + j + 1] - |
|
I0_ptr[i * I0_stride + j]; |
|
SSD += diff * diff; |
|
} |
|
#ifdef CV_SIMD128 |
|
} |
|
#endif |
|
return SSD; |
|
} |
|
|
|
/* Same as computeSSD, but with patch mean normalization */ |
|
inline float computeSSDMeanNorm(uchar *I0_ptr, uchar *I1_ptr, int I0_stride, int I1_stride, float w00, float w01, |
|
float w10, float w11, int patch_sz) |
|
{ |
|
float sum_diff = 0.0f, sum_diff_sq = 0.0f; |
|
float n = (float)patch_sz * patch_sz; |
|
#ifdef CV_SIMD128 |
|
if (patch_sz == 8) |
|
{ |
|
v_float32x4 sum_diff_vec = v_setall_f32(0); |
|
v_float32x4 sum_diff_sq_vec = v_setall_f32(0); |
|
HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION; |
|
for (int row = 0; row < 8; row++) |
|
{ |
|
HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION; |
|
sum_diff_sq_vec += I_diff_left * I_diff_left + I_diff_right * I_diff_right; |
|
sum_diff_vec += I_diff_left + I_diff_right; |
|
HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW; |
|
} |
|
sum_diff = v_reduce_sum(sum_diff_vec); |
|
sum_diff_sq = v_reduce_sum(sum_diff_sq_vec); |
|
} |
|
else |
|
{ |
|
#endif |
|
float diff; |
|
for (int i = 0; i < patch_sz; i++) |
|
for (int j = 0; j < patch_sz; j++) |
|
{ |
|
diff = w00 * I1_ptr[i * I1_stride + j] + w01 * I1_ptr[i * I1_stride + j + 1] + |
|
w10 * I1_ptr[(i + 1) * I1_stride + j] + w11 * I1_ptr[(i + 1) * I1_stride + j + 1] - |
|
I0_ptr[i * I0_stride + j]; |
|
|
|
sum_diff += diff; |
|
sum_diff_sq += diff * diff; |
|
} |
|
#ifdef CV_SIMD128 |
|
} |
|
#endif |
|
return sum_diff_sq - sum_diff * sum_diff / n; |
|
} |
|
|
|
#undef HAL_INIT_BILINEAR_8x8_PATCH_EXTRACTION |
|
#undef HAL_PROCESS_BILINEAR_8x8_PATCH_EXTRACTION |
|
#undef HAL_BILINEAR_8x8_PATCH_EXTRACTION_NEXT_ROW |
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
void DISOpticalFlowImpl::PatchInverseSearch_ParBody::operator()(const Range &range) const |
|
{ |
|
// force separate processing of stripes if we are using spatial propagation: |
|
if (dis->use_spatial_propagation && range.end > range.start + 1) |
|
{ |
|
for (int n = range.start; n < range.end; n++) |
|
(*this)(Range(n, n + 1)); |
|
return; |
|
} |
|
int psz = dis->patch_size; |
|
int psz2 = psz / 2; |
|
int w_ext = dis->w + 2 * dis->border_size; //!< width of I1_ext |
|
int bsz = dis->border_size; |
|
|
|
/* Input dense flow */ |
|
float *Ux_ptr = Ux->ptr<float>(); |
|
float *Uy_ptr = Uy->ptr<float>(); |
|
|
|
/* Output sparse flow */ |
|
float *Sx_ptr = Sx->ptr<float>(); |
|
float *Sy_ptr = Sy->ptr<float>(); |
|
|
|
uchar *I0_ptr = I0->ptr<uchar>(); |
|
uchar *I1_ptr = I1->ptr<uchar>(); |
|
short *I0x_ptr = I0x->ptr<short>(); |
|
short *I0y_ptr = I0y->ptr<short>(); |
|
|
|
/* Precomputed structure tensor */ |
|
float *xx_ptr = dis->I0xx_buf.ptr<float>(); |
|
float *yy_ptr = dis->I0yy_buf.ptr<float>(); |
|
float *xy_ptr = dis->I0xy_buf.ptr<float>(); |
|
/* And extra buffers for mean-normalization: */ |
|
float *x_ptr = dis->I0x_buf.ptr<float>(); |
|
float *y_ptr = dis->I0y_buf.ptr<float>(); |
|
|
|
bool use_temporal_candidates = false; |
|
float *initial_Ux_ptr = NULL, *initial_Uy_ptr = NULL; |
|
if (!dis->initial_Ux.empty()) |
|
{ |
|
initial_Ux_ptr = dis->initial_Ux[pyr_level].ptr<float>(); |
|
initial_Uy_ptr = dis->initial_Uy[pyr_level].ptr<float>(); |
|
use_temporal_candidates = true; |
|
} |
|
|
|
int i, j, dir; |
|
int start_is, end_is, start_js, end_js; |
|
int start_i, start_j; |
|
float i_lower_limit = bsz - psz + 1.0f; |
|
float i_upper_limit = bsz + dis->h - 1.0f; |
|
float j_lower_limit = bsz - psz + 1.0f; |
|
float j_upper_limit = bsz + dis->w - 1.0f; |
|
float dUx, dUy, i_I1, j_I1, w00, w01, w10, w11, dx, dy; |
|
|
|
#define INIT_BILINEAR_WEIGHTS(Ux, Uy) \ |
|
i_I1 = min(max(i + Uy + bsz, i_lower_limit), i_upper_limit); \ |
|
j_I1 = min(max(j + Ux + bsz, j_lower_limit), j_upper_limit); \ |
|
\ |
|
w11 = (i_I1 - floor(i_I1)) * (j_I1 - floor(j_I1)); \ |
|
w10 = (i_I1 - floor(i_I1)) * (floor(j_I1) + 1 - j_I1); \ |
|
w01 = (floor(i_I1) + 1 - i_I1) * (j_I1 - floor(j_I1)); \ |
|
w00 = (floor(i_I1) + 1 - i_I1) * (floor(j_I1) + 1 - j_I1); |
|
|
|
#define COMPUTE_SSD(dst, Ux, Uy) \ |
|
INIT_BILINEAR_WEIGHTS(Ux, Uy); \ |
|
if (dis->use_mean_normalization) \ |
|
dst = computeSSDMeanNorm(I0_ptr + i * dis->w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1, dis->w, w_ext, w00, \ |
|
w01, w10, w11, psz); \ |
|
else \ |
|
dst = computeSSD(I0_ptr + i * dis->w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1, dis->w, w_ext, w00, w01, \ |
|
w10, w11, psz); |
|
|
|
int num_inner_iter = (int)floor(dis->grad_descent_iter / (float)num_iter); |
|
for (int iter = 0; iter < num_iter; iter++) |
|
{ |
|
if (iter % 2 == 0) |
|
{ |
|
dir = 1; |
|
start_is = min(range.start * stripe_sz, hs); |
|
end_is = min(range.end * stripe_sz, hs); |
|
start_js = 0; |
|
end_js = dis->ws; |
|
start_i = start_is * dis->patch_stride; |
|
start_j = 0; |
|
} |
|
else |
|
{ |
|
dir = -1; |
|
start_is = min(range.end * stripe_sz, hs) - 1; |
|
end_is = min(range.start * stripe_sz, hs) - 1; |
|
start_js = dis->ws - 1; |
|
end_js = -1; |
|
start_i = start_is * dis->patch_stride; |
|
start_j = (dis->ws - 1) * dis->patch_stride; |
|
} |
|
|
|
i = start_i; |
|
for (int is = start_is; dir * is < dir * end_is; is += dir) |
|
{ |
|
j = start_j; |
|
for (int js = start_js; dir * js < dir * end_js; js += dir) |
|
{ |
|
if (iter == 0) |
|
{ |
|
/* Using result form the previous pyramid level as the very first approximation: */ |
|
Sx_ptr[is * dis->ws + js] = Ux_ptr[(i + psz2) * dis->w + j + psz2]; |
|
Sy_ptr[is * dis->ws + js] = Uy_ptr[(i + psz2) * dis->w + j + psz2]; |
|
} |
|
|
|
float min_SSD = INF, cur_SSD; |
|
if (use_temporal_candidates || dis->use_spatial_propagation) |
|
{ |
|
COMPUTE_SSD(min_SSD, Sx_ptr[is * dis->ws + js], Sy_ptr[is * dis->ws + js]); |
|
} |
|
|
|
if (use_temporal_candidates) |
|
{ |
|
/* Try temporal candidates (vectors from the initial flow field that was passed to the function) */ |
|
COMPUTE_SSD(cur_SSD, initial_Ux_ptr[(i + psz2) * dis->w + j + psz2], |
|
initial_Uy_ptr[(i + psz2) * dis->w + j + psz2]); |
|
if (cur_SSD < min_SSD) |
|
{ |
|
min_SSD = cur_SSD; |
|
Sx_ptr[is * dis->ws + js] = initial_Ux_ptr[(i + psz2) * dis->w + j + psz2]; |
|
Sy_ptr[is * dis->ws + js] = initial_Uy_ptr[(i + psz2) * dis->w + j + psz2]; |
|
} |
|
} |
|
|
|
if (dis->use_spatial_propagation) |
|
{ |
|
/* Try spatial candidates: */ |
|
if (dir * js > dir * start_js) |
|
{ |
|
COMPUTE_SSD(cur_SSD, Sx_ptr[is * dis->ws + js - dir], Sy_ptr[is * dis->ws + js - dir]); |
|
if (cur_SSD < min_SSD) |
|
{ |
|
min_SSD = cur_SSD; |
|
Sx_ptr[is * dis->ws + js] = Sx_ptr[is * dis->ws + js - dir]; |
|
Sy_ptr[is * dis->ws + js] = Sy_ptr[is * dis->ws + js - dir]; |
|
} |
|
} |
|
/* Flow vectors won't actually propagate across different stripes, which is the reason for keeping |
|
* the number of stripes constant. It works well enough in practice and doesn't introduce any |
|
* visible seams. |
|
*/ |
|
if (dir * is > dir * start_is) |
|
{ |
|
COMPUTE_SSD(cur_SSD, Sx_ptr[(is - dir) * dis->ws + js], Sy_ptr[(is - dir) * dis->ws + js]); |
|
if (cur_SSD < min_SSD) |
|
{ |
|
min_SSD = cur_SSD; |
|
Sx_ptr[is * dis->ws + js] = Sx_ptr[(is - dir) * dis->ws + js]; |
|
Sy_ptr[is * dis->ws + js] = Sy_ptr[(is - dir) * dis->ws + js]; |
|
} |
|
} |
|
} |
|
|
|
/* Use the best candidate as a starting point for the gradient descent: */ |
|
float cur_Ux = Sx_ptr[is * dis->ws + js]; |
|
float cur_Uy = Sy_ptr[is * dis->ws + js]; |
|
|
|
/* Computing the inverse of the structure tensor: */ |
|
float detH = xx_ptr[is * dis->ws + js] * yy_ptr[is * dis->ws + js] - |
|
xy_ptr[is * dis->ws + js] * xy_ptr[is * dis->ws + js]; |
|
if (abs(detH) < EPS) |
|
detH = EPS; |
|
float invH11 = yy_ptr[is * dis->ws + js] / detH; |
|
float invH12 = -xy_ptr[is * dis->ws + js] / detH; |
|
float invH22 = xx_ptr[is * dis->ws + js] / detH; |
|
float prev_SSD = INF, SSD; |
|
float x_grad_sum = x_ptr[is * dis->ws + js]; |
|
float y_grad_sum = y_ptr[is * dis->ws + js]; |
|
|
|
for (int t = 0; t < num_inner_iter; t++) |
|
{ |
|
INIT_BILINEAR_WEIGHTS(cur_Ux, cur_Uy); |
|
if (dis->use_mean_normalization) |
|
SSD = processPatchMeanNorm(dUx, dUy, I0_ptr + i * dis->w + j, |
|
I1_ptr + (int)i_I1 * w_ext + (int)j_I1, I0x_ptr + i * dis->w + j, |
|
I0y_ptr + i * dis->w + j, dis->w, w_ext, w00, w01, w10, w11, psz, |
|
x_grad_sum, y_grad_sum); |
|
else |
|
SSD = processPatch(dUx, dUy, I0_ptr + i * dis->w + j, I1_ptr + (int)i_I1 * w_ext + (int)j_I1, |
|
I0x_ptr + i * dis->w + j, I0y_ptr + i * dis->w + j, dis->w, w_ext, w00, w01, |
|
w10, w11, psz); |
|
|
|
dx = invH11 * dUx + invH12 * dUy; |
|
dy = invH12 * dUx + invH22 * dUy; |
|
cur_Ux -= dx; |
|
cur_Uy -= dy; |
|
|
|
/* Break when patch distance stops decreasing */ |
|
if (SSD >= prev_SSD) |
|
break; |
|
prev_SSD = SSD; |
|
} |
|
|
|
/* If gradient descent converged to a flow vector that is very far from the initial approximation |
|
* (more than patch size) then we don't use it. Noticeably improves the robustness. |
|
*/ |
|
if (norm(Vec2f(cur_Ux - Sx_ptr[is * dis->ws + js], cur_Uy - Sy_ptr[is * dis->ws + js])) <= psz) |
|
{ |
|
Sx_ptr[is * dis->ws + js] = cur_Ux; |
|
Sy_ptr[is * dis->ws + js] = cur_Uy; |
|
} |
|
j += dir * dis->patch_stride; |
|
} |
|
i += dir * dis->patch_stride; |
|
} |
|
} |
|
#undef INIT_BILINEAR_WEIGHTS |
|
#undef COMPUTE_SSD |
|
} |
|
|
|
DISOpticalFlowImpl::Densification_ParBody::Densification_ParBody(DISOpticalFlowImpl &_dis, int _nstripes, int _h, |
|
Mat &dst_Ux, Mat &dst_Uy, Mat &src_Sx, Mat &src_Sy, |
|
Mat &_I0, Mat &_I1) |
|
: dis(&_dis), nstripes(_nstripes), h(_h), Ux(&dst_Ux), Uy(&dst_Uy), Sx(&src_Sx), Sy(&src_Sy), I0(&_I0), I1(&_I1) |
|
{ |
|
stripe_sz = (int)ceil(h / (double)nstripes); |
|
} |
|
|
|
/* This function transforms a sparse optical flow field obtained by PatchInverseSearch (which computes flow values |
|
* on a sparse grid defined by patch_stride) into a dense optical flow field by weighted averaging of values from the |
|
* overlapping patches. |
|
*/ |
|
void DISOpticalFlowImpl::Densification_ParBody::operator()(const Range &range) const |
|
{ |
|
int start_i = min(range.start * stripe_sz, h); |
|
int end_i = min(range.end * stripe_sz, h); |
|
|
|
/* Input sparse flow */ |
|
float *Sx_ptr = Sx->ptr<float>(); |
|
float *Sy_ptr = Sy->ptr<float>(); |
|
|
|
/* Output dense flow */ |
|
float *Ux_ptr = Ux->ptr<float>(); |
|
float *Uy_ptr = Uy->ptr<float>(); |
|
|
|
uchar *I0_ptr = I0->ptr<uchar>(); |
|
uchar *I1_ptr = I1->ptr<uchar>(); |
|
|
|
int psz = dis->patch_size; |
|
int pstr = dis->patch_stride; |
|
int i_l, i_u; |
|
int j_l, j_u; |
|
float i_m, j_m, diff; |
|
|
|
/* These values define the set of sparse grid locations that contain patches overlapping with the current dense flow |
|
* location */ |
|
int start_is, end_is; |
|
int start_js, end_js; |
|
|
|
/* Some helper macros for updating this set of sparse grid locations */ |
|
#define UPDATE_SPARSE_I_COORDINATES \ |
|
if (i % pstr == 0 && i + psz <= h) \ |
|
end_is++; \ |
|
if (i - psz >= 0 && (i - psz) % pstr == 0 && start_is < end_is) \ |
|
start_is++; |
|
|
|
#define UPDATE_SPARSE_J_COORDINATES \ |
|
if (j % pstr == 0 && j + psz <= dis->w) \ |
|
end_js++; \ |
|
if (j - psz >= 0 && (j - psz) % pstr == 0 && start_js < end_js) \ |
|
start_js++; |
|
|
|
start_is = 0; |
|
end_is = -1; |
|
for (int i = 0; i < start_i; i++) |
|
{ |
|
UPDATE_SPARSE_I_COORDINATES; |
|
} |
|
for (int i = start_i; i < end_i; i++) |
|
{ |
|
UPDATE_SPARSE_I_COORDINATES; |
|
start_js = 0; |
|
end_js = -1; |
|
for (int j = 0; j < dis->w; j++) |
|
{ |
|
UPDATE_SPARSE_J_COORDINATES; |
|
float coef, sum_coef = 0.0f; |
|
float sum_Ux = 0.0f; |
|
float sum_Uy = 0.0f; |
|
|
|
/* Iterate through all the patches that overlap the current location (i,j) */ |
|
for (int is = start_is; is <= end_is; is++) |
|
for (int js = start_js; js <= end_js; js++) |
|
{ |
|
j_m = min(max(j + Sx_ptr[is * dis->ws + js], 0.0f), dis->w - 1.0f - EPS); |
|
i_m = min(max(i + Sy_ptr[is * dis->ws + js], 0.0f), dis->h - 1.0f - EPS); |
|
j_l = (int)j_m; |
|
j_u = j_l + 1; |
|
i_l = (int)i_m; |
|
i_u = i_l + 1; |
|
diff = (j_m - j_l) * (i_m - i_l) * I1_ptr[i_u * dis->w + j_u] + |
|
(j_u - j_m) * (i_m - i_l) * I1_ptr[i_u * dis->w + j_l] + |
|
(j_m - j_l) * (i_u - i_m) * I1_ptr[i_l * dis->w + j_u] + |
|
(j_u - j_m) * (i_u - i_m) * I1_ptr[i_l * dis->w + j_l] - I0_ptr[i * dis->w + j]; |
|
coef = 1 / max(1.0f, abs(diff)); |
|
sum_Ux += coef * Sx_ptr[is * dis->ws + js]; |
|
sum_Uy += coef * Sy_ptr[is * dis->ws + js]; |
|
sum_coef += coef; |
|
} |
|
Ux_ptr[i * dis->w + j] = sum_Ux / sum_coef; |
|
Uy_ptr[i * dis->w + j] = sum_Uy / sum_coef; |
|
} |
|
} |
|
#undef UPDATE_SPARSE_I_COORDINATES |
|
#undef UPDATE_SPARSE_J_COORDINATES |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool DISOpticalFlowImpl::ocl_PatchInverseSearch(UMat &src_Ux, UMat &src_Uy, |
|
UMat &I0, UMat &I1, UMat &I0x, UMat &I0y, int num_iter, int pyr_level) |
|
{ |
|
size_t globalSize[] = {(size_t)ws, (size_t)hs}; |
|
size_t localSize[] = {16, 16}; |
|
int idx; |
|
int num_inner_iter = (int)floor(grad_descent_iter / (float)num_iter); |
|
|
|
for (int iter = 0; iter < num_iter; iter++) |
|
{ |
|
if (iter == 0) |
|
{ |
|
ocl::Kernel k1("dis_patch_inverse_search_fwd_1", ocl::optflow::dis_flow_oclsrc); |
|
size_t global_sz[] = {(size_t)hs * 8}; |
|
size_t local_sz[] = {8}; |
|
idx = 0; |
|
|
|
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(src_Ux)); |
|
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(src_Uy)); |
|
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(I0)); |
|
idx = k1.set(idx, ocl::KernelArg::PtrReadOnly(I1)); |
|
idx = k1.set(idx, (int)border_size); |
|
idx = k1.set(idx, (int)patch_size); |
|
idx = k1.set(idx, (int)patch_stride); |
|
idx = k1.set(idx, (int)w); |
|
idx = k1.set(idx, (int)h); |
|
idx = k1.set(idx, (int)ws); |
|
idx = k1.set(idx, (int)hs); |
|
idx = k1.set(idx, (int)pyr_level); |
|
idx = k1.set(idx, ocl::KernelArg::PtrWriteOnly(u_Sx)); |
|
idx = k1.set(idx, ocl::KernelArg::PtrWriteOnly(u_Sy)); |
|
if (!k1.run(1, global_sz, local_sz, false)) |
|
return false; |
|
|
|
ocl::Kernel k2("dis_patch_inverse_search_fwd_2", ocl::optflow::dis_flow_oclsrc); |
|
idx = 0; |
|
|
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(src_Ux)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(src_Uy)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I1)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0x)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(I0y)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xx_buf)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0yy_buf)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xy_buf)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0x_buf)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadOnly(u_I0y_buf)); |
|
idx = k2.set(idx, (int)border_size); |
|
idx = k2.set(idx, (int)patch_size); |
|
idx = k2.set(idx, (int)patch_stride); |
|
idx = k2.set(idx, (int)w); |
|
idx = k2.set(idx, (int)h); |
|
idx = k2.set(idx, (int)ws); |
|
idx = k2.set(idx, (int)hs); |
|
idx = k2.set(idx, (int)num_inner_iter); |
|
idx = k2.set(idx, (int)pyr_level); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx)); |
|
idx = k2.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy)); |
|
if (!k2.run(2, globalSize, localSize, false)) |
|
return false; |
|
} |
|
else |
|
{ |
|
ocl::Kernel k3("dis_patch_inverse_search_bwd_1", ocl::optflow::dis_flow_oclsrc); |
|
size_t global_sz[] = {(size_t)hs * 8}; |
|
size_t local_sz[] = {8}; |
|
idx = 0; |
|
|
|
idx = k3.set(idx, ocl::KernelArg::PtrReadOnly(I0)); |
|
idx = k3.set(idx, ocl::KernelArg::PtrReadOnly(I1)); |
|
idx = k3.set(idx, (int)border_size); |
|
idx = k3.set(idx, (int)patch_size); |
|
idx = k3.set(idx, (int)patch_stride); |
|
idx = k3.set(idx, (int)w); |
|
idx = k3.set(idx, (int)h); |
|
idx = k3.set(idx, (int)ws); |
|
idx = k3.set(idx, (int)hs); |
|
idx = k3.set(idx, (int)pyr_level); |
|
idx = k3.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx)); |
|
idx = k3.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy)); |
|
if (!k3.run(1, global_sz, local_sz, false)) |
|
return false; |
|
|
|
ocl::Kernel k4("dis_patch_inverse_search_bwd_2", ocl::optflow::dis_flow_oclsrc); |
|
idx = 0; |
|
|
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I1)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0x)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(I0y)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xx_buf)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0yy_buf)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0xy_buf)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0x_buf)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadOnly(u_I0y_buf)); |
|
idx = k4.set(idx, (int)border_size); |
|
idx = k4.set(idx, (int)patch_size); |
|
idx = k4.set(idx, (int)patch_stride); |
|
idx = k4.set(idx, (int)w); |
|
idx = k4.set(idx, (int)h); |
|
idx = k4.set(idx, (int)ws); |
|
idx = k4.set(idx, (int)hs); |
|
idx = k4.set(idx, (int)num_inner_iter); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadWrite(u_Sx)); |
|
idx = k4.set(idx, ocl::KernelArg::PtrReadWrite(u_Sy)); |
|
if (!k4.run(2, globalSize, localSize, false)) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool DISOpticalFlowImpl::ocl_Densification(UMat &dst_Ux, UMat &dst_Uy, UMat &src_Sx, UMat &src_Sy, UMat &_I0, UMat &_I1) |
|
{ |
|
size_t globalSize[] = {(size_t)w, (size_t)h}; |
|
size_t localSize[] = {16, 16}; |
|
|
|
ocl::Kernel kernel("dis_densification", ocl::optflow::dis_flow_oclsrc); |
|
kernel.args(ocl::KernelArg::PtrReadOnly(src_Sx), |
|
ocl::KernelArg::PtrReadOnly(src_Sy), |
|
ocl::KernelArg::PtrReadOnly(_I0), |
|
ocl::KernelArg::PtrReadOnly(_I1), |
|
(int)patch_size, (int)patch_stride, |
|
(int)w, (int)h, (int)ws, |
|
ocl::KernelArg::PtrWriteOnly(dst_Ux), |
|
ocl::KernelArg::PtrWriteOnly(dst_Uy)); |
|
return kernel.run(2, globalSize, localSize, false); |
|
} |
|
|
|
void DISOpticalFlowImpl::ocl_prepareBuffers(UMat &I0, UMat &I1, UMat &flow, bool use_flow) |
|
{ |
|
u_I0s.resize(coarsest_scale + 1); |
|
u_I1s.resize(coarsest_scale + 1); |
|
u_I1s_ext.resize(coarsest_scale + 1); |
|
u_I0xs.resize(coarsest_scale + 1); |
|
u_I0ys.resize(coarsest_scale + 1); |
|
u_Ux.resize(coarsest_scale + 1); |
|
u_Uy.resize(coarsest_scale + 1); |
|
|
|
vector<UMat> flow_uv(2); |
|
if (use_flow) |
|
{ |
|
split(flow, flow_uv); |
|
u_initial_Ux.resize(coarsest_scale + 1); |
|
u_initial_Uy.resize(coarsest_scale + 1); |
|
} |
|
|
|
int fraction = 1; |
|
int cur_rows = 0, cur_cols = 0; |
|
|
|
for (int i = 0; i <= coarsest_scale; i++) |
|
{ |
|
/* Avoid initializing the pyramid levels above the finest scale, as they won't be used anyway */ |
|
if (i == finest_scale) |
|
{ |
|
cur_rows = I0.rows / fraction; |
|
cur_cols = I0.cols / fraction; |
|
u_I0s[i].create(cur_rows, cur_cols, CV_8UC1); |
|
resize(I0, u_I0s[i], u_I0s[i].size(), 0.0, 0.0, INTER_AREA); |
|
u_I1s[i].create(cur_rows, cur_cols, CV_8UC1); |
|
resize(I1, u_I1s[i], u_I1s[i].size(), 0.0, 0.0, INTER_AREA); |
|
|
|
/* These buffers are reused in each scale so we initialize them once on the finest scale: */ |
|
u_Sx.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_Sy.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_I0xx_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_I0yy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_I0xy_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_I0x_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
u_I0y_buf.create(cur_rows / patch_stride, cur_cols / patch_stride, CV_32FC1); |
|
|
|
u_I0xx_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1); |
|
u_I0yy_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1); |
|
u_I0xy_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1); |
|
u_I0x_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1); |
|
u_I0y_buf_aux.create(cur_rows, cur_cols / patch_stride, CV_32FC1); |
|
|
|
u_U.create(cur_rows, cur_cols, CV_32FC2); |
|
} |
|
else if (i > finest_scale) |
|
{ |
|
cur_rows = u_I0s[i - 1].rows / 2; |
|
cur_cols = u_I0s[i - 1].cols / 2; |
|
u_I0s[i].create(cur_rows, cur_cols, CV_8UC1); |
|
resize(u_I0s[i - 1], u_I0s[i], u_I0s[i].size(), 0.0, 0.0, INTER_AREA); |
|
u_I1s[i].create(cur_rows, cur_cols, CV_8UC1); |
|
resize(u_I1s[i - 1], u_I1s[i], u_I1s[i].size(), 0.0, 0.0, INTER_AREA); |
|
} |
|
|
|
if (i >= finest_scale) |
|
{ |
|
u_I1s_ext[i].create(cur_rows + 2 * border_size, cur_cols + 2 * border_size, CV_8UC1); |
|
copyMakeBorder(u_I1s[i], u_I1s_ext[i], border_size, border_size, border_size, border_size, BORDER_REPLICATE); |
|
u_I0xs[i].create(cur_rows, cur_cols, CV_16SC1); |
|
u_I0ys[i].create(cur_rows, cur_cols, CV_16SC1); |
|
spatialGradient(u_I0s[i], u_I0xs[i], u_I0ys[i]); |
|
u_Ux[i].create(cur_rows, cur_cols, CV_32FC1); |
|
u_Uy[i].create(cur_rows, cur_cols, CV_32FC1); |
|
variational_refinement_processors[i]->setAlpha(variational_refinement_alpha); |
|
variational_refinement_processors[i]->setDelta(variational_refinement_delta); |
|
variational_refinement_processors[i]->setGamma(variational_refinement_gamma); |
|
variational_refinement_processors[i]->setSorIterations(5); |
|
variational_refinement_processors[i]->setFixedPointIterations(variational_refinement_iter); |
|
|
|
if (use_flow) |
|
{ |
|
resize(flow_uv[0], u_initial_Ux[i], Size(cur_cols, cur_rows)); |
|
divide(u_initial_Ux[i], static_cast<float>(fraction), u_initial_Ux[i]); |
|
resize(flow_uv[1], u_initial_Uy[i], Size(cur_cols, cur_rows)); |
|
divide(u_initial_Uy[i], static_cast<float>(fraction), u_initial_Uy[i]); |
|
} |
|
} |
|
|
|
fraction *= 2; |
|
} |
|
} |
|
|
|
bool DISOpticalFlowImpl::ocl_precomputeStructureTensor(UMat &dst_I0xx, UMat &dst_I0yy, UMat &dst_I0xy, |
|
UMat &dst_I0x, UMat &dst_I0y, UMat &I0x, UMat &I0y) |
|
{ |
|
size_t globalSizeX[] = {(size_t)h}; |
|
size_t localSizeX[] = {16}; |
|
|
|
ocl::Kernel kernelX("dis_precomputeStructureTensor_hor", ocl::optflow::dis_flow_oclsrc); |
|
kernelX.args(ocl::KernelArg::PtrReadOnly(I0x), |
|
ocl::KernelArg::PtrReadOnly(I0y), |
|
(int)patch_size, (int)patch_stride, |
|
(int)w, (int)h, (int)ws, |
|
ocl::KernelArg::PtrWriteOnly(u_I0xx_buf_aux), |
|
ocl::KernelArg::PtrWriteOnly(u_I0yy_buf_aux), |
|
ocl::KernelArg::PtrWriteOnly(u_I0xy_buf_aux), |
|
ocl::KernelArg::PtrWriteOnly(u_I0x_buf_aux), |
|
ocl::KernelArg::PtrWriteOnly(u_I0y_buf_aux)); |
|
if (!kernelX.run(1, globalSizeX, localSizeX, false)) |
|
return false; |
|
|
|
size_t globalSizeY[] = {(size_t)ws}; |
|
size_t localSizeY[] = {16}; |
|
|
|
ocl::Kernel kernelY("dis_precomputeStructureTensor_ver", ocl::optflow::dis_flow_oclsrc); |
|
kernelY.args(ocl::KernelArg::PtrReadOnly(u_I0xx_buf_aux), |
|
ocl::KernelArg::PtrReadOnly(u_I0yy_buf_aux), |
|
ocl::KernelArg::PtrReadOnly(u_I0xy_buf_aux), |
|
ocl::KernelArg::PtrReadOnly(u_I0x_buf_aux), |
|
ocl::KernelArg::PtrReadOnly(u_I0y_buf_aux), |
|
(int)patch_size, (int)patch_stride, |
|
(int)w, (int)h, (int)ws, |
|
ocl::KernelArg::PtrWriteOnly(dst_I0xx), |
|
ocl::KernelArg::PtrWriteOnly(dst_I0yy), |
|
ocl::KernelArg::PtrWriteOnly(dst_I0xy), |
|
ocl::KernelArg::PtrWriteOnly(dst_I0x), |
|
ocl::KernelArg::PtrWriteOnly(dst_I0y)); |
|
return kernelY.run(1, globalSizeY, localSizeY, false); |
|
} |
|
|
|
bool DISOpticalFlowImpl::ocl_calc(InputArray I0, InputArray I1, InputOutputArray flow) |
|
{ |
|
UMat I0Mat = I0.getUMat(); |
|
UMat I1Mat = I1.getUMat(); |
|
bool use_input_flow = false; |
|
if (flow.sameSize(I0) && flow.depth() == CV_32F && flow.channels() == 2) |
|
use_input_flow = true; |
|
else |
|
flow.create(I1Mat.size(), CV_32FC2); |
|
UMat &u_flowMat = flow.getUMatRef(); |
|
coarsest_scale = min((int)(log(max(I0Mat.cols, I0Mat.rows) / (4.0 * patch_size)) / log(2.0) + 0.5), /* Original code serach for maximal movement of width/4 */ |
|
(int)(log(min(I0Mat.cols, I0Mat.rows) / patch_size) / log(2.0))); /* Deepest pyramid level greater or equal than patch*/ |
|
|
|
ocl_prepareBuffers(I0Mat, I1Mat, u_flowMat, use_input_flow); |
|
u_Ux[coarsest_scale].setTo(0.0f); |
|
u_Uy[coarsest_scale].setTo(0.0f); |
|
|
|
for (int i = coarsest_scale; i >= finest_scale; i--) |
|
{ |
|
w = u_I0s[i].cols; |
|
h = u_I0s[i].rows; |
|
ws = 1 + (w - patch_size) / patch_stride; |
|
hs = 1 + (h - patch_size) / patch_stride; |
|
|
|
if (!ocl_precomputeStructureTensor(u_I0xx_buf, u_I0yy_buf, u_I0xy_buf, |
|
u_I0x_buf, u_I0y_buf, u_I0xs[i], u_I0ys[i])) |
|
return false; |
|
|
|
if (!ocl_PatchInverseSearch(u_Ux[i], u_Uy[i], u_I0s[i], u_I1s_ext[i], u_I0xs[i], u_I0ys[i], 2, i)) |
|
return false; |
|
|
|
if (!ocl_Densification(u_Ux[i], u_Uy[i], u_Sx, u_Sy, u_I0s[i], u_I1s[i])) |
|
return false; |
|
|
|
if (variational_refinement_iter > 0) |
|
variational_refinement_processors[i]->calcUV(u_I0s[i], u_I1s[i], |
|
u_Ux[i].getMat(ACCESS_WRITE), u_Uy[i].getMat(ACCESS_WRITE)); |
|
|
|
if (i > finest_scale) |
|
{ |
|
resize(u_Ux[i], u_Ux[i - 1], u_Ux[i - 1].size()); |
|
resize(u_Uy[i], u_Uy[i - 1], u_Uy[i - 1].size()); |
|
multiply(u_Ux[i - 1], 2, u_Ux[i - 1]); |
|
multiply(u_Uy[i - 1], 2, u_Uy[i - 1]); |
|
} |
|
} |
|
vector<UMat> uxy(2); |
|
uxy[0] = u_Ux[finest_scale]; |
|
uxy[1] = u_Uy[finest_scale]; |
|
merge(uxy, u_U); |
|
resize(u_U, u_flowMat, u_flowMat.size()); |
|
multiply(u_flowMat, 1 << finest_scale, u_flowMat); |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flow) |
|
{ |
|
CV_Assert(!I0.empty() && I0.depth() == CV_8U && I0.channels() == 1); |
|
CV_Assert(!I1.empty() && I1.depth() == CV_8U && I1.channels() == 1); |
|
CV_Assert(I0.sameSize(I1)); |
|
CV_Assert(I0.isContinuous()); |
|
CV_Assert(I1.isContinuous()); |
|
|
|
CV_OCL_RUN(ocl::Device::getDefault().isIntel() && flow.isUMat() && |
|
(patch_size == 8) && (use_spatial_propagation == true), |
|
ocl_calc(I0, I1, flow)); |
|
|
|
Mat I0Mat = I0.getMat(); |
|
Mat I1Mat = I1.getMat(); |
|
bool use_input_flow = false; |
|
if (flow.sameSize(I0) && flow.depth() == CV_32F && flow.channels() == 2) |
|
use_input_flow = true; |
|
else |
|
flow.create(I1Mat.size(), CV_32FC2); |
|
Mat flowMat = flow.getMat(); |
|
coarsest_scale = min((int)(log(max(I0Mat.cols, I0Mat.rows) / (4.0 * patch_size)) / log(2.0) + 0.5), /* Original code serach for maximal movement of width/4 */ |
|
(int)(log(min(I0Mat.cols, I0Mat.rows) / patch_size) / log(2.0))); /* Deepest pyramid level greater or equal than patch*/ |
|
int num_stripes = getNumThreads(); |
|
|
|
prepareBuffers(I0Mat, I1Mat, flowMat, use_input_flow); |
|
Ux[coarsest_scale].setTo(0.0f); |
|
Uy[coarsest_scale].setTo(0.0f); |
|
|
|
for (int i = coarsest_scale; i >= finest_scale; i--) |
|
{ |
|
w = I0s[i].cols; |
|
h = I0s[i].rows; |
|
ws = 1 + (w - patch_size) / patch_stride; |
|
hs = 1 + (h - patch_size) / patch_stride; |
|
|
|
precomputeStructureTensor(I0xx_buf, I0yy_buf, I0xy_buf, I0x_buf, I0y_buf, I0xs[i], I0ys[i]); |
|
if (use_spatial_propagation) |
|
{ |
|
/* Use a fixed number of stripes regardless the number of threads to make inverse search |
|
* with spatial propagation reproducible |
|
*/ |
|
parallel_for_(Range(0, 8), PatchInverseSearch_ParBody(*this, 8, hs, Sx, Sy, Ux[i], Uy[i], I0s[i], |
|
I1s_ext[i], I0xs[i], I0ys[i], 2, i)); |
|
} |
|
else |
|
{ |
|
parallel_for_(Range(0, num_stripes), |
|
PatchInverseSearch_ParBody(*this, num_stripes, hs, Sx, Sy, Ux[i], Uy[i], I0s[i], I1s_ext[i], |
|
I0xs[i], I0ys[i], 1, i)); |
|
} |
|
|
|
parallel_for_(Range(0, num_stripes), |
|
Densification_ParBody(*this, num_stripes, I0s[i].rows, Ux[i], Uy[i], Sx, Sy, I0s[i], I1s[i])); |
|
if (variational_refinement_iter > 0) |
|
variational_refinement_processors[i]->calcUV(I0s[i], I1s[i], Ux[i], Uy[i]); |
|
|
|
if (i > finest_scale) |
|
{ |
|
resize(Ux[i], Ux[i - 1], Ux[i - 1].size()); |
|
resize(Uy[i], Uy[i - 1], Uy[i - 1].size()); |
|
Ux[i - 1] *= 2; |
|
Uy[i - 1] *= 2; |
|
} |
|
} |
|
Mat uxy[] = {Ux[finest_scale], Uy[finest_scale]}; |
|
merge(uxy, 2, U); |
|
resize(U, flowMat, flowMat.size()); |
|
flowMat *= 1 << finest_scale; |
|
} |
|
|
|
void DISOpticalFlowImpl::collectGarbage() |
|
{ |
|
I0s.clear(); |
|
I1s.clear(); |
|
I1s_ext.clear(); |
|
I0xs.clear(); |
|
I0ys.clear(); |
|
Ux.clear(); |
|
Uy.clear(); |
|
U.release(); |
|
Sx.release(); |
|
Sy.release(); |
|
I0xx_buf.release(); |
|
I0yy_buf.release(); |
|
I0xy_buf.release(); |
|
I0xx_buf_aux.release(); |
|
I0yy_buf_aux.release(); |
|
I0xy_buf_aux.release(); |
|
|
|
#ifdef HAVE_OPENCL |
|
u_I0s.clear(); |
|
u_I1s.clear(); |
|
u_I1s_ext.clear(); |
|
u_I0xs.clear(); |
|
u_I0ys.clear(); |
|
u_Ux.clear(); |
|
u_Uy.clear(); |
|
u_U.release(); |
|
u_Sx.release(); |
|
u_Sy.release(); |
|
u_I0xx_buf.release(); |
|
u_I0yy_buf.release(); |
|
u_I0xy_buf.release(); |
|
u_I0xx_buf_aux.release(); |
|
u_I0yy_buf_aux.release(); |
|
u_I0xy_buf_aux.release(); |
|
#endif |
|
|
|
for (int i = finest_scale; i <= coarsest_scale; i++) |
|
variational_refinement_processors[i]->collectGarbage(); |
|
variational_refinement_processors.clear(); |
|
} |
|
|
|
Ptr<DISOpticalFlow> createOptFlow_DIS(int preset) |
|
{ |
|
Ptr<DISOpticalFlow> dis = makePtr<DISOpticalFlowImpl>(); |
|
dis->setPatchSize(8); |
|
if (preset == DISOpticalFlow::PRESET_ULTRAFAST) |
|
{ |
|
dis->setFinestScale(2); |
|
dis->setPatchStride(4); |
|
dis->setGradientDescentIterations(12); |
|
dis->setVariationalRefinementIterations(0); |
|
} |
|
else if (preset == DISOpticalFlow::PRESET_FAST) |
|
{ |
|
dis->setFinestScale(2); |
|
dis->setPatchStride(4); |
|
dis->setGradientDescentIterations(16); |
|
dis->setVariationalRefinementIterations(5); |
|
} |
|
else if (preset == DISOpticalFlow::PRESET_MEDIUM) |
|
{ |
|
dis->setFinestScale(1); |
|
dis->setPatchStride(3); |
|
dis->setGradientDescentIterations(25); |
|
dis->setVariationalRefinementIterations(5); |
|
} |
|
|
|
return dis; |
|
} |
|
} |
|
}
|
|
|