You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
8.8 KiB
264 lines
8.8 KiB
/* |
|
|
|
By downloading, copying, installing or using the software you agree to this |
|
license. If you do not agree to this license, do not download, install, |
|
copy or use the software. |
|
|
|
|
|
License Agreement |
|
For Open Source Computer Vision Library |
|
(3-clause BSD License) |
|
|
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
Third party copyrights are property of their respective owners. |
|
|
|
Redistribution and use in source and binary forms, with or without modification, |
|
are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
|
|
* Neither the names of the copyright holders nor the names of the contributors |
|
may be used to endorse or promote products derived from this software |
|
without specific prior written permission. |
|
|
|
This software is provided by the copyright holders and contributors "as is" and |
|
any express or implied warranties, including, but not limited to, the implied |
|
warranties of merchantability and fitness for a particular purpose are |
|
disclaimed. In no event shall copyright holders or contributors be liable for |
|
any direct, indirect, incidental, special, exemplary, or consequential damages |
|
(including, but not limited to, procurement of substitute goods or services; |
|
loss of use, data, or profits; or business interruption) however caused |
|
and on any theory of liability, whether in contract, strict liability, |
|
or tort (including negligence or otherwise) arising in any way out of |
|
the use of this software, even if advised of the possibility of such damage. |
|
|
|
*/ |
|
|
|
#ifndef __OPENCV_XOBJDETECT_XOBJDETECT_HPP__ |
|
#define __OPENCV_XOBJDETECT_XOBJDETECT_HPP__ |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <vector> |
|
#include <string> |
|
|
|
/** @defgroup xobjdetect Extended object detection |
|
*/ |
|
|
|
namespace cv |
|
{ |
|
namespace xobjdetect |
|
{ |
|
|
|
//! @addtogroup xobjdetect |
|
//! @{ |
|
|
|
/** @brief Compute channels for integral channel features evaluation |
|
|
|
@param image image for which channels should be computed |
|
@param channels output array for computed channels |
|
*/ |
|
CV_EXPORTS void computeChannels(InputArray image, std::vector<Mat>& channels); |
|
|
|
/** @brief Feature evaluation interface |
|
*/ |
|
class CV_EXPORTS FeatureEvaluator : public Algorithm |
|
{ |
|
public: |
|
/** @brief Set channels for feature evaluation |
|
|
|
@param channels array of channels to be set |
|
*/ |
|
virtual void setChannels(InputArrayOfArrays channels) = 0; |
|
|
|
/** @brief Set window position to sample features with shift. By default position is (0, 0). |
|
|
|
@param position position to be set |
|
*/ |
|
virtual void setPosition(Size position) = 0; |
|
|
|
/** @brief Evaluate feature value with given index for current channels and window position. |
|
|
|
@param feature_ind index of feature to be evaluated |
|
*/ |
|
virtual int evaluate(size_t feature_ind) const = 0; |
|
|
|
/** @brief Evaluate all features for current channels and window position. |
|
|
|
@param feature_values matrix-column of evaluated feature values |
|
*/ |
|
virtual void evaluateAll(OutputArray feature_values) const = 0; |
|
|
|
virtual void assertChannels() = 0; |
|
}; |
|
|
|
/** @brief Construct feature evaluator. |
|
|
|
@param features features for evaluation |
|
@param type feature type. Can be "icf" or "acf" |
|
*/ |
|
CV_EXPORTS Ptr<FeatureEvaluator> |
|
createFeatureEvaluator(const std::vector<std::vector<int> >& features, |
|
const std::string& type); |
|
|
|
/** @brief Generate integral features. Returns vector of features. |
|
|
|
@param window_size size of window in which features should be evaluated |
|
@param type feature type. Can be "icf" or "acf" |
|
@param count number of features to generate. |
|
@param channel_count number of feature channels |
|
*/ |
|
std::vector<std::vector<int> > |
|
generateFeatures(Size window_size, const std::string& type, |
|
int count = INT_MAX, int channel_count = 10); |
|
|
|
//sort in-place of columns of the input matrix |
|
void sort_columns_without_copy(Mat& m, Mat indices = Mat()); |
|
|
|
/** @brief Parameters for WaldBoost. weak_count — number of weak learners, alpha — cascade thresholding param. |
|
*/ |
|
struct CV_EXPORTS WaldBoostParams |
|
{ |
|
int weak_count; |
|
float alpha; |
|
|
|
WaldBoostParams(): weak_count(100), alpha(0.02f) |
|
{} |
|
}; |
|
|
|
/** @brief WaldBoost object detector from @cite Sochman05 . |
|
*/ |
|
class CV_EXPORTS WaldBoost : public Algorithm |
|
{ |
|
public: |
|
/** @brief Train WaldBoost cascade for given data. |
|
|
|
Returns feature indices chosen for cascade. Feature enumeration starts from 0. |
|
@param data matrix of feature values, size M x N, one feature per row |
|
@param labels matrix of samples class labels, size 1 x N. Labels can be from {-1, +1} |
|
@param use_fast_log |
|
*/ |
|
virtual std::vector<int> train(Mat& data, |
|
const Mat& labels, bool use_fast_log=false) = 0; |
|
|
|
/** @brief Predict objects class given object that can compute object features. |
|
|
|
Returns unnormed confidence value — measure of confidence that object is from class +1. |
|
@param feature_evaluator object that can compute features by demand |
|
*/ |
|
virtual float predict( |
|
const Ptr<FeatureEvaluator>& feature_evaluator) const = 0; |
|
|
|
/** @brief Write WaldBoost to FileStorage |
|
@param fs FileStorage for output |
|
*/ |
|
virtual void write(FileStorage& fs) const = 0; |
|
|
|
/** @brief Write WaldBoost to FileNode |
|
|
|
@param node FileNode for reading |
|
*/ |
|
virtual void read(const FileNode& node) = 0; |
|
}; |
|
|
|
/** @brief Construct WaldBoost object. |
|
*/ |
|
CV_EXPORTS Ptr<WaldBoost> |
|
createWaldBoost(const WaldBoostParams& params = WaldBoostParams()); |
|
|
|
/** @brief Params for ICFDetector training. |
|
*/ |
|
struct CV_EXPORTS ICFDetectorParams |
|
{ |
|
int feature_count; |
|
int weak_count; |
|
int model_n_rows; |
|
int model_n_cols; |
|
int bg_per_image; |
|
std::string features_type; |
|
float alpha; |
|
bool is_grayscale; |
|
bool use_fast_log; |
|
|
|
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100), |
|
model_n_rows(56), model_n_cols(56), bg_per_image(5), alpha(0.02f), is_grayscale(false), use_fast_log(false) |
|
{} |
|
}; |
|
|
|
/** @brief Integral Channel Features from @cite Dollar09 . |
|
*/ |
|
class CV_EXPORTS ICFDetector |
|
{ |
|
public: |
|
|
|
ICFDetector(): waldboost_(), features_(), ftype_() {} |
|
|
|
/** @brief Train detector. |
|
|
|
@param pos_filenames path to folder with images of objects (wildcards like /my/path/\*.png are allowed) |
|
@param bg_filenames path to folder with background images |
|
@param params parameters for detector training |
|
*/ |
|
void train(const std::vector<String>& pos_filenames, |
|
const std::vector<String>& bg_filenames, |
|
ICFDetectorParams params = ICFDetectorParams()); |
|
|
|
/** @brief Detect objects on image. |
|
@param image image for detection |
|
@param objects output array of bounding boxes |
|
@param scaleFactor scale between layers in detection pyramid |
|
@param minSize min size of objects in pixels |
|
@param maxSize max size of objects in pixels |
|
@param threshold |
|
@param slidingStep sliding window step |
|
@param values output vector with values of positive samples |
|
*/ |
|
void detect(const Mat& image, std::vector<Rect>& objects, |
|
float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values); |
|
|
|
/** @brief Detect objects on image. |
|
@param img image for detection |
|
@param objects output array of bounding boxes |
|
@param minScaleFactor min factor by which the image will be resized |
|
@param maxScaleFactor max factor by which the image will be resized |
|
@param factorStep scaling factor is incremented each pyramid layer according to this parameter |
|
@param threshold |
|
@param slidingStep sliding window step |
|
@param values output vector with values of positive samples |
|
*/ |
|
void detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values); |
|
|
|
/** @brief Write detector to FileStorage. |
|
@param fs FileStorage for output |
|
*/ |
|
void write(FileStorage &fs) const; |
|
|
|
/** @brief Write ICFDetector to FileNode |
|
@param node FileNode for reading |
|
*/ |
|
void read(const FileNode &node); |
|
|
|
private: |
|
Ptr<WaldBoost> waldboost_; |
|
std::vector<std::vector<int> > features_; |
|
int model_n_rows_; |
|
int model_n_cols_; |
|
std::string ftype_; |
|
}; |
|
|
|
CV_EXPORTS void write(FileStorage& fs, String&, const ICFDetector& detector); |
|
|
|
CV_EXPORTS void read(const FileNode& node, ICFDetector& d, |
|
const ICFDetector& default_value = ICFDetector()); |
|
|
|
//! @} |
|
|
|
} /* namespace xobjdetect */ |
|
} /* namespace cv */ |
|
|
|
#endif /* __OPENCV_XOBJDETECT_XOBJDETECT_HPP__ */
|
|
|