You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
8.3 KiB
217 lines
8.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <string> |
|
|
|
#ifdef HAVE_CVCONFIG_H |
|
#include "cvconfig.h" |
|
#endif |
|
|
|
#ifdef HAVE_TBB |
|
#include "tbb/task_scheduler_init.h" |
|
#endif |
|
|
|
using namespace cv; |
|
|
|
const float score_thr = 0.05f; |
|
|
|
class LatentSVMDetectorCaskadeTest : public cvtest::BaseTest |
|
{ |
|
protected: |
|
void run(int); |
|
}; |
|
|
|
static void writeDetections( FileStorage& fs, const std::string& nodeName, const std::vector<lsvm::LSVMDetector::ObjectDetection>& detections ) |
|
{ |
|
fs << nodeName << "["; |
|
for( size_t i = 0; i < detections.size(); i++ ) //FIXME operator << |
|
{ |
|
lsvm::LSVMDetector::ObjectDetection const &d = detections[i]; |
|
fs << d.rect.x << d.rect.y << d.rect.width << d.rect.height |
|
<< d.score << d.classID; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
static void readDetections( FileStorage fs, const std::string& nodeName, |
|
std::vector<lsvm::LSVMDetector::ObjectDetection>& detections ) |
|
{ |
|
detections.clear(); |
|
|
|
FileNode fn = fs.root()[nodeName]; |
|
FileNodeIterator fni = fn.begin(); |
|
while( fni != fn.end() ) |
|
{ |
|
lsvm::LSVMDetector::ObjectDetection d; |
|
fni >> d.rect.x >> d.rect.y >> d.rect.width >> d.rect.height |
|
>> d.score >> d.classID; |
|
detections.push_back( d ); |
|
} |
|
} |
|
|
|
static inline bool isEqualCaskad( const lsvm::LSVMDetector::ObjectDetection& d1, |
|
const lsvm::LSVMDetector::ObjectDetection& d2, int eps, float threshold) |
|
{ |
|
return ( |
|
std::abs(d1.rect.x - d2.rect.x) <= eps |
|
&& std::abs(d1.rect.y - d2.rect.y) <= eps |
|
&& std::abs(d1.rect.width - d2.rect.width) <= eps |
|
&& std::abs(d1.rect.height - d2.rect.height) <= eps |
|
&& (d1.classID == d2.classID) |
|
&& std::abs(d1.score - d2.score) <= threshold |
|
); |
|
} |
|
|
|
|
|
bool compareResults( const std::vector<lsvm::LSVMDetector::ObjectDetection>& calc, |
|
const std::vector<lsvm::LSVMDetector::ObjectDetection>& valid, int eps, float threshold) |
|
{ |
|
if( calc.size() != valid.size() ) |
|
return false; |
|
|
|
for( size_t i = 0; i < calc.size(); i++ ) |
|
{ |
|
lsvm::LSVMDetector::ObjectDetection const &c = calc[i]; |
|
lsvm::LSVMDetector::ObjectDetection const &v = valid[i]; |
|
|
|
if( !isEqualCaskad(c, v, eps, threshold) ) |
|
{ |
|
std::cerr << "Expected: " << v.rect << " class=" << v.classID << " score=" << v.score << std::endl; |
|
std::cerr << "Actual: " << c.rect << " class=" << c.classID << " score=" << c.score << std::endl; |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
void LatentSVMDetectorCaskadeTest::run( int /* start_from */) |
|
{ |
|
std::string img_path_cat = std::string(ts->get_data_path()) + "cat.png"; |
|
std::string img_path_cars = std::string(ts->get_data_path()) + "cars.png"; |
|
|
|
std::string model_path_cat = std::string(ts->get_data_path()) + "models_VOC2007_cascade/cat.xml"; |
|
std::string model_path_car = std::string(ts->get_data_path()) + "models_VOC2007_cascade/car.xml"; |
|
|
|
std::string true_res_path = std::string(ts->get_data_path()) + "results_cascade.xml"; |
|
|
|
|
|
#ifdef HAVE_TBB |
|
int numThreads = 2; |
|
#endif |
|
|
|
Mat image_cat = imread( img_path_cat ); |
|
Mat image_cars = imread( img_path_cars ); |
|
if( image_cat.empty() || image_cars.empty() ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
// We will test 2 cases: |
|
// detector1 - to test case of one class 'cat' |
|
// detector12 - to test case of two (several) classes 'cat' and car |
|
|
|
// Load detectors |
|
cv::Ptr<lsvm::LSVMDetector> detector1 = lsvm::LSVMDetector::create(std::vector<std::string>(1,model_path_cat)); |
|
|
|
std::vector<std::string> models_pathes(2); |
|
models_pathes[0] = model_path_cat; |
|
models_pathes[1] = model_path_car; |
|
cv::Ptr<lsvm::LSVMDetector> detector12 = lsvm::LSVMDetector::create(models_pathes); |
|
|
|
if( detector1->isEmpty() || detector12->isEmpty() || detector12->getClassCount() != 2 ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
// 1. Test method detect |
|
// Run detectors |
|
std::vector<lsvm::LSVMDetector::ObjectDetection> detections1_cat, detections12_cat, detections12_cars; |
|
detector1->detect( image_cat, detections1_cat, 0.5); |
|
detector12->detect( image_cat, detections12_cat, 0.5); |
|
detector12->detect( image_cars, detections12_cars, 0.5); |
|
|
|
// Load true results |
|
FileStorage fs( true_res_path, FileStorage::READ ); |
|
if( fs.isOpened() ) |
|
{ |
|
std::vector<lsvm::LSVMDetector::ObjectDetection> true_detections1_cat, true_detections12_cat, true_detections12_cars; |
|
readDetections( fs, "detections1_cat", true_detections1_cat ); |
|
readDetections( fs, "detections12_cat", true_detections12_cat ); |
|
readDetections( fs, "detections12_cars", true_detections12_cars ); |
|
|
|
if( !compareResults(detections1_cat, true_detections1_cat, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector1 are invalid on image cat.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
if( !compareResults(detections12_cat, true_detections12_cat, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector12 are invalid on image cat.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
if( !compareResults(detections12_cars, true_detections12_cars, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector12 are invalid on image cars.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
} |
|
else |
|
{ |
|
fs.open( true_res_path, FileStorage::WRITE ); |
|
if( fs.isOpened() ) |
|
{ |
|
writeDetections( fs, "detections1_cat", detections1_cat ); |
|
writeDetections( fs, "detections12_cat", detections12_cat ); |
|
writeDetections( fs, "detections12_cars", detections12_cars ); |
|
} |
|
else |
|
std::cerr << "File " << true_res_path << " cann't be opened to save test results" << std::endl; |
|
} |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK); |
|
} |
|
|
|
TEST(Objdetect_LatentSVMDetectorCaskade_cpp, regression) { LatentSVMDetectorCaskadeTest test; test.safe_run(); }
|
|
|